To study morphological and optical properties of doped zinc sulfide

Loading...
Thumbnail Image
Date
2023-05
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
CCSHAU, Hisar
Abstract
Zinc Sulphide (ZnS) is a semiconductor receiving discernible attention as a nanomaterial scale because of excellent ion accessibility, charge storage ability, enhanced luminescent efficiency and lifetime shorting in comparison to that of bulk. However, doping of manganese (Mn) ion enhances its optoelectronic properties due to large exciton energy and wide bandgap at room temperature. ZnS and Mn-doped ZnS have been synthesized using the hydrothermal approach with 5, 10, and 20 % of Mn dopants. Prepared samples were characterized using X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), Field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FT-IR), UV-Vis and Photoluminescence (PL) spectroscopy. The XRD pattern confirmed the cubic sphalerite crystal structure of prepared nanoparticles (NPs) whereas FE-SEM micrographs showed sphere-shaped NPs. The EDX spectrum measurements showed that spectra of Mn-doped ZnS exhibit peak related to elemental Mn. The stretching mode of undoped ZnS was observed at 636 cm -1 and the Zn-S-Zn network was perturbed by the presence of Mn. The energy bandgap was found to be decreased with increasing doping percentage from 5 to 20%, which is agreed to XRD. The PL spectra of Mn-doped ZnS showed at room temperature exhibit both the blue defect-related emission and orange Mn +2 emission due to the 4 T1 – 6A1 transition.
Description
Keywords
Citation
Collections