Quantitative and molecular characterization for heat tolerance in wheat (Triticum aestivum L. em. Thell).

Loading...
Thumbnail Image
Date
2020-02
Journal Title
Journal ISSN
Volume Title
Publisher
CCSHAU, Hisar
Abstract
The present study was carried out to evaluate 96 advanced recombinant inbred lines derived from a cross WH 730 (heat tolerant) and WH 147 (higher yielder, heat susceptible) to find out physio-morphological traits and quantitative trait loci (QTLs) associated with heat tolerance in bread wheat. The experiment was conducted in augmented design and randomized complete block design (RBD) during Rabi season of 2014- 15, 2015-16 and 2016-17 in the Department of Genetics and Plant Breeding, CCS Haryana Agricultural University, Hisar. Analysis of variance revealed significant differences for all traits studied among the RILs. Medium to high values of GCV, PCV, heritability and genetic advance as percent of mean for grain yield per plant, number of grains per spike,100-grain weight, biological yield, canopy temperature depression and cell membrane thermostability under either one or both environments over the years indicating a high scope of selection for these traits for heat tolerance. Grain yield was significantly and positively correlated with number of tillers per plant, harvest index, biological yield per plant, 100-grain weight, canopy temperature depression, cell membrane thermostability and osmotic potential, whereas negative and significantly correlated with days to heading and days to maturity under timely and late sown conditions over the years. Biological yield and harvest index had high direct and indirect effects on grain yield per plant over environment and years, indicating the true relationships with grain yield, in this set of material. Nine promising RILs namely RIL No.46, 22, 40, 43, 57, 19, 48, 81, 71 and 88, out of 96 were identified for the traits i.e., 100-grain weight, harvest index, grain yield, canopy temperature depression and cell membrane thermostability related to heat tolerance under heat stress condition. Two RILs 22 and 40 showing better performance over the environment and year. Twenty-six, out of 81 SSR markers used were found polymorphic in parental genotypes and in RILs. Composite interval mapping (CIM) identified quantitative trait loci (QTL) with significant phenotypic variation for number of spikelets per spike, spike length and biological yield per plant along with heat susceptibility index (HSI). QTL identified for biological yield per plant reported maximum phenotypic variation (50.0%) followed by spike length (46.37%) and number of spikelets per spike (12.59%).
Description
Keywords
Citation
Collections