Loading...
Thumbnail Image

Kerala Agricultural University, Thrissur

The history of agricultural education in Kerala can be traced back to the year 1896 when a scheme was evolved in the erstwhile Travancore State to train a few young men in scientific agriculture at the Demonstration Farm, Karamana, Thiruvananthapuram, presently, the Cropping Systems Research Centre under Kerala Agricultural University. Agriculture was introduced as an optional subject in the middle school classes in the State in 1922 when an Agricultural Middle School was started at Aluva, Ernakulam District. The popularity and usefulness of this school led to the starting of similar institutions at Kottarakkara and Konni in 1928 and 1931 respectively. Agriculture was later introduced as an optional subject for Intermediate Course in 1953. In 1955, the erstwhile Government of Travancore-Cochin started the Agricultural College and Research Institute at Vellayani, Thiruvananthapuram and the College of Veterinary and Animal Sciences at Mannuthy, Thrissur for imparting higher education in agricultural and veterinary sciences, respectively. These institutions were brought under the direct administrative control of the Department of Agriculture and the Department of Animal Husbandry, respectively. With the formation of Kerala State in 1956, these two colleges were affiliated to the University of Kerala. The post-graduate programmes leading to M.Sc. (Ag), M.V.Sc. and Ph.D. degrees were started in 1961, 1962 and 1965 respectively. On the recommendation of the Second National Education Commission (1964-66) headed by Dr. D.S. Kothari, the then Chairman of the University Grants Commission, one Agricultural University in each State was established. The State Agricultural Universities (SAUs) were established in India as an integral part of the National Agricultural Research System to give the much needed impetus to Agriculture Education and Research in the Country. As a result the Kerala Agricultural University (KAU) was established on 24th February 1971 by virtue of the Act 33 of 1971 and started functioning on 1st February 1972. The Kerala Agricultural University is the 15th in the series of the SAUs. In accordance with the provisions of KAU Act of 1971, the Agricultural College and Research Institute at Vellayani, and the College of Veterinary and Animal Sciences, Mannuthy, were brought under the Kerala Agricultural University. In addition, twenty one agricultural and animal husbandry research stations were also transferred to the KAU for taking up research and extension programmes on various crops, animals, birds, etc. During 2011, Kerala Agricultural University was trifurcated into Kerala Veterinary and Animal Sciences University (KVASU), Kerala University of Fisheries and Ocean Studies (KUFOS) and Kerala Agricultural University (KAU). Now the University has seven colleges (four Agriculture, one Agricultural Engineering, one Forestry, one Co-operation Banking & Management), six RARSs, seven KVKs, 15 Research Stations and 16 Research and Extension Units under the faculties of Agriculture, Agricultural Engineering and Forestry. In addition, one Academy on Climate Change Adaptation and one Institute of Agricultural Technology offering M.Sc. (Integrated) Climate Change Adaptation and Diploma in Agricultural Sciences respectively are also functioning in Kerala Agricultural University.

Browse

Search Results

Now showing 1 - 9 of 19
  • ThesisItemOpen Access
    Development and evaluation of process protocol for vacuum fried carrot chips (Daucus Carota L)
    (Department of Processing and Food Engineering, KCAET, Tavanur, 2021) Babu, P; KAU; Rajesh, G K
    Carrots are highly nutritious vegetable, which can be consumed in raw and processed form throughout the world. Carrot plays a vital role in the development and protection of human body. Carrot contains vitamins viz., B1(Thiamine), B2(Riboflavin), B6(Niacin) and B12 (Cobalamin) besides rich in source of βcarotene and dietary fibre which are helpful to prevent cancer and other dreadful diseases occur in human body. In Kerala state, carrot production is very limited, but its consumption is more. The postharvest losses of carrot were estimated as 18- 20%. The development of value-added products from carrot was an idealistic solution to reduce the postharvest losses by adopting new processing technologies. At present, due to consumer’s awareness, there is a lot of demand for healthy and tasty snack products with less oil content which provide good health. In this context, investigation on processing technologies focus on producing high quality fried products with less oil content and good textural property. The technology of vacuum frying is a best option for the production of novel snacks which fulfil the consumers demand and meet nutritious requirements. Vacuum frying is a novel technology, in which the food is heated under lower temperature and pressure(<6kPa). Vacuum frying lowers the water activity, oil content, retains the color and preserve nutrients in the fried product. The batch type vacuum frying system consists of two chambers viz., frying chamber (3kg capacity) and oil storage chamber (30-35L capacity). The refined palm oil was used for vacuum frying and de-oiling was done at 1000 rpm for 10 min. After every batch of vacuum frying, the oil was collected for quality analysis. Prior to the research, the physico-chemical properties of raw carrot (Ooty-1) was determined. The pre-treatments viz., blanching, blanching cum drying, blanching cum freezing, freezing and gum coating were optimized based on the quality of vacuum fried carrot chips. The freezing pre-treatment obtained the best results among other pre-treatments in terms of less oil content (14.48 %), water activity (0.214), moisture content (2.67%), hardness (1.282 N) and red color retention of a* value (22.85). The standardization of process parameters were done using RSM (CCRD) based on the quality characteristics of VF-carrot chips. The process parameters seected in this study were frying temperature (100,110 and 1200C), frying pressure (11,13 and 15 kPa) and frying time (16,18 and 20 min). The optimum operating conditions of vacuum frying viz., frying temperature, vacuum pressure and frying time were found to be 100°C, 11 kPa and 16 min respectively. At optimum operating conditions of 100°C, 11 kPa and 16 min, the quality parameters were oil content (11.31%), bulk density(0.873 g/cm3 ), true density(1.714 g/cm3 ), moisture content(3.28%), water activity (0.384), hardness (1.31 N),thickness expansion (60.42%), L*(43.48), a*( 14.36) b*(28.12) and energy content(1021 KJ/100g). Packaging and storage studies were conducted for the treatments which had high sensory score. The laminated aluminium flexible pouch with N2 gas filling was found to be the best packaging technique to enhance the shelf life of VF carrot chips to a storage period of 4 months. The oil quality parameters viz., total polar compounds (TPC), viscosity, peroxide, free fatty acids (FFA) etc were within the allowable limits even after 40 batches of vacuum frying. The total production cost of 1kg of vacuum fried carrot chips was found to be Rs. 355/-.
  • ThesisItemOpen Access
    Investigations on high rate anaerobic bioreactor for energy production from rubber latex processing effluent
    (Department of Farm Machinery and Power Engineering, Kelappaji College of Agricultural Engineering and Technology,Tavanur, 2020) Megha, A S; KAU; Shaji James, P
    Agro-processing industries often contribute significantly in pollution due to discharge of untreated effluents. By anaerobic digestion of these organic effluents, methane rich gas can be produced which is suitable to generate electricity and process heat. But conventional biogas plants are slow in operation with long hydraulic retention times of 35 to 40 days which necessitates large digester volumes. So, anaerobic digestion of high volume agro-processing effluents is feasible only through high rate bioreactors which can reduce hydraulic retention time to few hours. Rubber latex processing effluent (RLPE) is a dilute waste water for which high rate anaerobic treatment can be an affordable technology. Hence, an investigation was taken up to study the performance of Up-flow Anaerobic Hybrid Bioreactor for energy conversion of rubber latex processing effluent (RLPE). Physico-chemical characteristics of RLPE samples were tested and found that RLPE was a dilute waste water with pH in the acidic range. BOD: COD ratio of 0.44 obtained in this study showed good biodegradability of RLPE. A batch anaerobic digestion study was conducted as a preliminary experiment to investigate the biomethanation characteristics of RLPE. The experiment consisted of four treatments having different composition of RLPE with inoculums replicated thrice. This study could prove that RLPE could be subjected to biomethanation and cow dung slurry can be used as inoculum. Even at a lower inoculum: substrate ratio of 1:2, the system could be started up yielding substantial amount of biogas coupled with good TS reduction. Performance of field scale Up-flow Anaerobic Hybrid Bioreactors (UAHBR) was assessed by operating them at different HRTs of 10, 7, 5, 3 and 2 day. During the study an interruption of 2 months in operation occurred due to shut down of the processing unit due to Covid 19. After interruption of 2 months reactor recovered within one month and it proved that hybrid bioreactor could be restarted easily after a shutdown for few months. Reactor was stable in operation during 10, 7, 5, 3 and 2 day HRTs and exhibited good process efficiency with better pollutant reduction and biogas production. Performance was seen deteriorated beyond 5 day HRT. The bioreactors were operated successively at reduced loading rates corresponding to the longer HRTs after reaching the shortest HRT of 2 day. It was observed that there was no considerable difference in daily biogas production with the earlier values obtained during the progressive decrease in HRT. This revealed that the bioreactors would have achieved the maximum possible microbial population already and there was no further improvement in performance on further passage of time. The performance parameters obtained in the investigations with field scale reactors were used for evolving guidelines to design a full scale anaerobic bioreactor. The UAHBR performance was quite satisfactory at 5 day HRT with respect to pollutant reduction as well as energy production. Hence as criteria, full scale plant was proposed to be operated at 5 day and the corresponding reactor volume was 27 m 3 with 7.2 m 3 gas holder volume. The biogas expected to be produced from the full scale plant can be used in a biogas fired rubber sheet dryer which can save about 500 kg of fire wood per day currently used for drying rubber sheets.
  • ThesisItemOpen Access
    Bionomics And Host Range Of American Serpentine Leaf Miner liriomyza trifolii (burgess) (agromyzidae :diptera)
    (Department of Agricultural Entomology, College of Horticulture,Vellanikkara, 2003) Smitha, M K; KAU; Maicykutty Mathew, P
    The present investigation on the "Bionomics and host range of American serpentine leaf miner, Liriomyza trifolii (Bugcss) (Agrornyzidae: Diptera)" was undertaken in the Department or Entomology, College of Horticulture, Vellanikkara during 2001-2002. Field surveys and laboratory studies were carried out with the objective of studying the biology, host range, natural enemies and seasonal incidence of L. trifolii. The biology of L. trifolii was studied by releasing a pair of one day old adult l1ies 10 the rearing cages where cow pea seedlings were kept as host plants and honey as a food source. The female Ily inserted its eggs in the tubular punctures made on the leaves with its pointed ovipositor. The oval, translucent, milky white eggs hatched in about 2.08 days. The larvae mined the upper leaf surface and produced characteristic serpentine mines. There were four larval instars having a total duration of 3.4days. Alter the larvae attained full size or 2.35 mm length and (),(i4 mill width it made a semicircular cut at the broad end of the leaf mine. Through this cut larva came out of the mine and fall down to the soil for pupation. Inside the soil the larva turned to golden yellow coloured pupa. Female pupa was larger compared to male pupa. Adult emergence took place after 7.9 days. The adults had a longevity varying form 4.5days for mall's and 7.4 days for females where as they were feed with 2 per cent honey solution. Adult females were larger than the males and had black pointed spot on the lower sick of last abdominal segment. The fecundity of female varied from 14.6 eggs per day per female. The adult female laid about 48-5'0 eggs in its life time. The ratio or oviposition or feeding puncture was I: R.QC) to 1: 9.3. The total life cycle from eggs to adult took 13.3 days. The host range was studied by conducting surveys at regular intervals. 48 host plants belonging to 13 plant families were reported as host plants of this pest. It is a highly polyphagous insect and majority or the host plants belonged to families of Cornpositac and Cucubitaccae. The intensity of infestation of 1.. trifolli on various crops were calculated by counting the number of larval mines per leaf on the upper, middle and lower leaves of the plants. The attack of L. trifolt! was more on the lower leaves compared to middle and top leaves. Cowpea was found to be the most preferred host plant of L. trifolii followed by ash gourd, ridge gourd, tomato, pumpkin and cucumber. Among the ornamentals dahlia and marigold were severely damaged by this leaf miner. The intensity of infestation per unit area was maximum on tomato (l.74 mines per cm2) followed by cowpea (1.14 mines per cnr'). The number of mines per unit area was lowest for pumpkin (0.33 mines per ern"). In the studies on the seasonal incidence of L. trifolii two peak periods of infestation was observed, one during November and the second during January. The leaf miner population was observed to be highest from second fortnight of November to second fortnight of April. A significant positive correlation of larval population with wind velocity, sunshine hours and evaporation rate was observed. Relative humidity and total rainfall had negative correlation with infestation of L. trifolii. Parasitisation of L. trifolii by larval and pupal parasitoids were observed and the percentage of parasitoids were observed and the percentage of parasitism was maximum during December, J,U1uaIY and February months coinciding with the peak infestation periods. These natural enemies can be effectively utilized for the management of L. trifolii.
  • ThesisItemOpen Access
    Optimum thresher parameters for high moist paddy
    (Department of Farm Power Machinery and Energy, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 1993) Hamza, Mollakadavath; KAU; Sivaswami, M
    The study undertaken by the newly development 1 hp paddy thresher to optimise its parameters for high moist paddy revealed that the peripheral velocity from 10.80 to 21.72 m/s on the rasp – bar, spike tooth, double directional spiral cylinders didn’t influence much on the threshing efficiency. When the moisture content was increased to 35 per cent, the threshing efficiency was brought down from 98.4 to 92 per cent for rasp – bar cylinder and was increased from 88 per cent to 94 per cent in the case of double directional spiral cylinder. The maximum threshing efficiency of 99 percent was achieved for spike tooth cylinder at 19.2 per cent moisture level. The maximum threshing efficiency of 94% and the maximum output of 340 kg/h were achieved with the double directional spiral cylinder when the moisture content was 35% per cent. The proto – type thresher was found to reduce the cost of threshing to 81 per cent and reduction in labour to 85.16 per cent compared to the manual threshing.
  • ThesisItemOpen Access
    Designing and development of an insecticide applicator for the control of brown plant hopper
    (Department of Farm Power Machinery and Energy, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 1988) Ramachandran, V R; KAU; Muhammad, C P
    The brown planthopper Nilaparvata Lugens stal. is a dangerous pest which causes, quick and serious damage to rice in South East Asia. In India a serious damage occurred in Kerala during 1973-76, and the estimated loss in this was 12 cores of rupees. An investigation on the design and development of an insecticide applicator for the control of BPH, by spraying specifically the plant base, at a height of about 15-20 cm from the field surface, was carried out
  • ThesisItemOpen Access
    Forms of water loss and water requirement of rice in kole lands
    (Department of Land and Water Resources and Conservation Engineering, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 1988) Lissy Devid, Chirayath; KAU; George, T P
    Rice is the most important and extensively cultivated food crop in Kerala. Efficient use of water for crop production has been a major concern for centuries. As the water needs of rice is many times greater than other crops, a precise knowledge of water requirement of crop attains importance for increasing production. The present investigation was taken up to estimate the losses through evaporation, transpiration, percolation and to asses the total water requirement of a medium duration rice variety jaya
  • ThesisItemOpen Access
    Hydraulics of KAU drip irrigation system
    (Department of Land and Water Resources and Conservation Engineering, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 1988) Susan Cherian, K; KAU; George, T P
    Irrigation advancements within the last decade has been astounding. Drip irrigation is one of the latest innovations for applying water to the field and it represents a definite advancement in irrigation technology. An attempt was made to study the hydraulics of microtube emitters of 1-3 mm size, Black polyethylene tube of 1" was used as main line. In the main line, three laterals of 1/2 diameter were connected. Discharge measurements were taken at different pressure heads. The total energy drop (H) in a microtube emitter is the summation of friction loss (Hf) and minor loss (Hm). There was no empirical equation available for calculating the friction drop from a microtube of size less than 4 mm. With the help of a computer, analysis was made to establish the relationships between pressure head H, length L, diameter D and discharge Q. The empirical equations obtained are 1. Combind flow condition H = 0.01402 Q1.23938/D3.54926 L0.86030 2. Turbulent flow condition H = 0.00764 Q1.82655/D4.61537 L0.77823 3. Flow in transition region H = 0.00817 Q1.56882/D3.83531 L0.83541 4. Laminar flow condition H = 0.00796 Q1.23461/D3.59105 L0.98712 Where Q = discharge, 1/hr L = length of tube, cm D = diameter of tube, mm The minor losses, viz. exit, entry, losses due to fittings and sudden contration can be expressed as a function of velocity head. The minor loss was significant because of the smaller size and short length of the microtube. The numerical solution for minor loss coefficient K was obtained in order to make the power of L unity in the estimating equations for head loss due to friction. The equations obtained are 1. Combind flow Hm = 2.34 V2/2g 2. Turbulent flow Hm = 2.14 V2/2g 3. Flow in transition region Hm = 3.18 V2/2g 4. Laminar flow Hm = 0.84 V2/2g Where V = Velocity, m/s G = acceleration due to gravity, m/s2 The empirical equations for friction drop were developed for different flow condition by fitting multiple log linear regression equations. The equations obtained are 1. Combined flow Hf = 0.00737 Q1.18905/D3.58352 L 2. Turbulent flow Hf = 0.00359 Q1.74866/D4.80544 L 3. Flow in transition region Hf = 0.00397 Q1.46302/D3.74436 L 4. Laminar flow Hf = 0.00743 Q1.22546/D3.58420 Similar to Blasius and general equations, the following equations were developed for friction factor in turbulent and laminar regions. f = 0.248/Re0.25 and f = 67.2/Re where f = friction factor Re = Reynolds number The KAU drip system has an additional component ‘Distributor’. Experiments were conducted to study the effect of distributor on flow rate. It was observed that the discharge rate was higher from the system with distributor than that of microtube having the same length. The frictional losses and the combined loss of minor and distributor for different flow conditions were estimated. Few combinations which satisfy the requirements of discharge, length and pressure head were selected for the design purpose of KAU drip irrigation system. The effect of clogging on discharge rate was studies and it was found that clogging was higher in 1 mm tube than the 2 mm and 3 mm tubes. Experiments were conducted to estimate friction loss in laterals. Hazen – Williams equation was found suitable for turbulent region and not for laminar and transition region. By adopting drip system we can bring more area under cultivation by maximum utilisation of available water. By combining improved agronomic practices along with an efficient drip irrigation system, it is possible to bring about a substantial progress in the farm front.
  • ThesisItemOpen Access
    Development of ejector systems for increasing the discharges of centrifugal pumps
    (Department of Irrigation and Drainage Engineering, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 1988) Latha, A Koshy; KAU; John Thomas, K
    The pump capability requirement in agriculture especially in rice production is essentially one of low lift and high capacity. Because of the low lift conditions the full capacity of the centrifugal pump cannot be used. By attaching an ejector system, the centrifugal pump is brought to work under the best efficiency condition during low lift also.
  • ThesisItemOpen Access
    Design, fabrication and evaluation of the performance characteristics of hydraulic ram by varying the various parameters
    (Department of Land and Water Resources and Conservation Engineering, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 1989) Suseela, P; KAU; George, T P
    In India, the agricultural production in many areas especially in hilly areas is very much affected by the non – availability of adequate power to lift water for irrigation. Main problems in enhancing irrigation facilities in hilly regions are their highly uneven topography and non availability of conventional sources of energy. The rapid depletion of conventional sources of energy and increasing demands have now focussed the attention on the need for developing a new economical and effective water lifting device which does not use the conventional sources of energy. A hydraulic ram may meet these requirements in hilly regions and can lift water without any external source of energy in the form of fuel or electricity. A hydraulic ram was designed and fabricated with cheap and commercially available materials. A constant supply head of 1.955 m was provided. Ram was designed for a maximum delivery head of 10 m. Provisions were given to vary the weight and stroke length of both the delivery valve and waste valve. A flange joint was incorporated valve and waste valve. A flange joint was incorporated between the delivery valve and air chamber to facilitate the quick opening and reinstallation of air chamber. Air chamber was fabricated with provisions to alter the volume, by changing the length of air chamber – the diameter of the air chamber was kept constant. The performance of hydraulic ram was evaluated mainly observing the delivery head – delivery discharge relationships. In each case the efficiency of the ram was evaluated. Typical performance characteristic curves were plotted for each of the changes in the conditions of operation. Effect of volume of air chamber on the performance of hydraulic ram was studied. The study revealed that the efficiency of the ram increases 1. as the weight of delivery valve increases 2. as the stroke length of delivery valve decreases 3. as the volume of air chamber increases 4. as the stroke length of waste valve decreases There is a steep reduction in delivery discharge with unit increase in delivery head. For a particular combination of waste valve, delivery valve and volume of air chamber, the maximum efficiency occurs at a moderate delivery head. For an increase in the stroke length of waste valve, there is a large reduction in best frequency. The beat frequency increases as the delivery head increases. The rate of decrease of best frequency with respect to the stroke length is higher for lower weights of was to valve. The ram stops functioning at certain low value of delivery head. This low valve of delivery head increases with increase in weight of delivery valve. Corresponding to a certain weight of delivery valve, there is a minimum weight of waste valve at which the ram functions satisfactorily. Further investigations are necessary to standardise different parts of the hydraulic rams for optimising their performance under varying conditions.