Loading...
Thumbnail Image

Thesis

Browse

Search Results

Now showing 1 - 9 of 75
  • ThesisItemOpen Access
    Effect of agronomic manipulations on crop productivity and weed dynamics in poplar (Populus deltoides Bartr.) based agroforestry system
    (Punjab Agricultural University, Ludhiana, 2022) Parija, Bhadra; Navneet Kaur
    Present study entitled “Effect of agronomic manipulations on crop productivity and weed dynamics in poplar (Populus deltoides Bartr.) based agroforestry system” was carried out at Punjab Agricultural University, Ludhiana and KVK, Roopnagar (Experiment I) during 2017- 18 and 2018-19. Experiment I consisted of crop establishment methods of wheat viz. two methods of sowing (line sowing and broadcasting) and two seed rates (100 kg/ha and 125 kg/ha) along with five weed control treatments viz. carfentrazone 20 g/ha, pinoxaden 50 g/ha, clodinafop+metribuzin 270 g/ha, weed free check and weedy check in factorial RBD with 3 replications. The age of the poplar tree was 4 years in Ludhiana with 12.4 m height and 15.8 cm diameter at breast height (dbh) while at Roopnagar the age of the plantation was 3 years with an average 9.3 m height and 12.1 cm dbh during 2018-19. Experiment II consisted of planting geometry viz. two poplar spacings (8m×2.5m and 7m×3m, paired at 2.5m) and two potato planting geometry (65cm×18.5cm and 75cm×15cm) in main plots and weed control treatments (atrazine 0.250 kg/ha, metribuzin 0.350 kg/ha, paraquat 0.300 kg/ha, clodinafop+metribuzin 0.270 kg/ha, weed free check and weedy check) in sub-plots with three replications in split-plot design. The age of the poplar here was 6 years old with 19.6 m height and 26.5 cm DBH during 2018-19. The results of experiment I revealed that line sown wheat (38.0-42.8 q/ha) with higher seed rate of 125 kg/ha (37.3-41.5 q/ha) under weed free check (40.2-45.4 q/ha) had higher yield advantages with a greater number of effective tillers, spike length, grains/ear and 1000-grain weight in comparison to broadcasted with lower seed rate wheat crop under the rest weed control treatments and it was statistically at par with clodinafop+metribuzin 270 g/ha (36.5-41.3 q/ha) applied treatments. The application of clodinafop+metribuzin 270 g/ha effectively reduced the weed count and biomass. In experiment II, poplar spacing of 8m×2.5m (263.5-272.0 q/ha) and potato planting geometry of 75cm×15cm (256.6-262.1 q/ha) recorded significantly higher potato tuber yield. Among the weed control treatments weed free check (294.9-302.9 q/ha) was at par with clodinafop+metribuzin 0.270 kg/ha (289.4-293.2 q/ha) in terms of potato tuber no., weight/hill and yield. These treatments have exhibited a higher weed smothering effect thereby subsequently reduced the weed seed bank and seed recruitment in both the experiments. All the herbicides used in both the experiments temporarily reduced the microbial population and their activity upto 90 days of application and then it recovered till harvesting of the intercrops.
  • ThesisItemEmbargo
    Residue mulch, tillage and irrigation effects on crop and water productivity of pigeonpea-wheat cropping system
    (Punjab Agricultural University, 2022) Satinder Singh; K.B. Singh
    A two-year field experiment on effect of variable irrigation regimes, crop residue mulch and tillage treatments on pigen pea was conducted in loamy sand and sandy loam soil at research farm of Department of Soil Science. The treatments were combination of three irrigation regimes of 0, 0.2 and 0.4 (based on IW/ Pan-E ratios) in main plots, tillage practises (conventional (CT) and deep tillage (DT)) and two rice straw mulch rates (0 and 6 t ha-1) in sub plots. Irrigation regime I2, Soil temperature recorded under I2 was lower than I1 and I0 irrigation regime. Rice straw mulch and CT reduced soil temperature at 0.5 m depth during both years. Frequent irrigation (I2) with mulching recorded higher periodic soil moisture content and storage than limited irrigation regimes without mulch. Leaf water potential, relative leaf water content, soil plant analysis development (SPAD), normalized difference vegetation index (NDVI), leaf area index (LAI) , periodic biomass and plant height were significantly higher in I2 compared to I1 and I0, in DT compared to CT and in mulching compared to no mulch. With I2, DT and mulching significantly higher pigeon pea grain and stover yield were recorded as compared to I1 and I0, CT and no mulch. In grain and stover yield significant intercations were observed between irrigation x mulch, tillage x mulch and irrigation x tillage x mulch. The residual effect of different treatments imposed in pigeon pea on yield and yield attributing of wheat were non significant. The simulated seasonal water balance in pigeon pea was in proximate agreement with observed values for irrigation regimes, tillage and mulching treatments. Good coefficient of determination between simulated and predicted values of LAI, biomass and evapotranspiration indicated that the DSSAT (CROPGRO) model simulations were satisfactory.
  • ThesisItemEmbargo
    Evaluation of morpho-physiological and metal accumulation potential of Salix alba L. and Toona ciliata M. Roemer grown on heavy metal contaminated soils
    (Punjab Agricultural University, 2022) Ravneet Kaur; Sharma, Rajni
    The present investigations were carried out to study the effect of lead (Pb), cadmium (Cd) and their combinations (Pb+Cd) on morpho-physiological and metal accumulation potential of Salix alba and Toona ciliata during 2020 and 2021. Heavy metals induce negative effect on morphological and biomass attributes of both species, but Toona showed better survival percentage (>95%) than Salix (<55%) even at higher concentrations of Pb300 and Cd25. The accumulation of proline, total soluble sugars, total soluble proteins along with increased antioxidant enzyme activities are responsible to enhance tolerance in both species. On the basis of phytoremediation efficiency evaluation factors such as bioconcentration factor (BCF) and translocation factor (TF), Salix alba can be categorized as excluder plant for Pb and Cd with higher metal accumulation in roots than shoots (BCF>1, TF<1), while Toona ciliata can be categorized as hyperaccumulator with more Pb and Cd accumulation in the shoots than roots (BCF>1 and TF>1). Further, heavy metal translocation and accumulation decreased in combinations as compared to single element application suggesting the antagonistic relationship among both metals. Pb and Cd negatively affect the plant nutrient content either by affecting their translocation or by decreasing nutrient availability in soils. Anatomical studies showed significant alterations in stomatal pore size, stomatal density and trichome density due to heavy metal toxicity in both Salix and Toona. Field emission scanning electron microscopy and energy dispersive x-ray spectroscopy (FESEM-EDS) results confirmed the Pb and Cd accumulation sites in the leaves and root tissues of plants. Fourier transformed infrared (FTIR) spectroscopy analysis revealed that Pb and Cd accumulation in plants induced changes in carboxy, amino, hydroxyl and phosphate groups that ultimately caused alteration in physiological functioning in plants. Conclusively, both Salix alba and Toona ciliata have potential to be used as remediation species for Pb and Cd contaminated soils.
  • ThesisItemEmbargo
    Synthesis of boron and phosphorous doped graphene fabricated with magnesium ferrite – bentonite nanocomposite for the remediation of pollutants
    (Punjab Agricultural University, 2022) Manpreet Kaur; Manpreet Kaur
    Graphene oxide (GO) doped with heteroatoms are gaining interest in depollution of water because of their large surface area. The boron-doped GO (B-GO), phosphorous-doped GO (P-GO) and boron and phosphorous co-doped GO (BPGO) in different w:w ratios were synthesized and fully characterized using analytical techniques viz. FT-IR, XRD, SEM-EDS, TEM, BET, Mössbauer and XPS. In order to impart magnetic features to doped GO materials, magnesium ferrite-bentonite (MGF-B) was used to fabricate nanocomposite of MGF-B and BPGO having hierarchical nanoflowers like morphology (HNFs). TEM of co-doped GO showed more wrinkled surface than doped GO, whereas in case of HNFs, chiffon-like BPGO nanosheets were wrapped on the MGF-B surface, resulting in a porous flower-like morphology. The synthesized materials were explored as adsorbents for the removal of Pb(II) and As(III) ions and as photocatalysts for the degradation of martius yellow, p-nitrophenol and malathion from synthetic waste water. The trend for the percentage removal of heavy metals by adsorption and degradation of organic pollutants by photocatalysis in the descending order was found to be: HNFs > BPGO-1:1 > BPGO-1:5 > BPGO-1:0.2 > MGF-B > P-GO > B-GO > GO. The adsorptive and photocatalytic potential of HNFs was greater as compared to pristine, doped and codoped GO due to high surface area, remarkable charge transfer ability and layered structure of codoped GO sheets. The HNFs possessed appreciable saturation magnetization than doped and co-doped GO layers, which led to its easy separation and reusability. Box-Behnken design was utilized for exploring the simultaneous effects of the independent variables on removal of metal ions and degradation of organic pollutants (as dependent variable) using HNFs. The adsorption and photocatalytic mechanism was proposed on the basis of adsorption isotherm, thermodynamic, kinetic and quenching studies. Enhanced activity of HNFs with adsorption of heavy metal could be defined by the electronic structural properties of elements. The best adsorbent and photocatalyst were also tested for spiked solution containing different metal ions and real life industrial water matrices.
  • ThesisItemOpen Access
    Soil Moisture Sensor System Development and evaluation for irrigation scheduling in subsurface drip irrigated Sugarcane
    (Punjab Agricultural University, Ludhiana, 2022) Raheja, Amina; Garg, Sunil
    A study was conducted in Punjab Agricultural University on Soil Moisture Sensor System Development and evaluation for irrigation scheduling in subsurface drip irrigated Sugarcane. The sugarcane crop was sown for two consecutive years as plant (2019-20) and ratoon crop(2020-21). The irrigation to sugarcane crop was given by sub surface drip irrigation installed at three different depths-20 cm, 25 cm, and 30 cm depth. Water application was based on evapotranspiration of crop (ETc) for first year and sensor-based irrigation for ratoon crop. The low-cost capacitive sensor system with four moisture sensing probes was developed, calibrated, and tested both in laboratory and field to measure the sensor-to-sensor variability due to the placement of sensors in soil at different depths. The exponential calibration curve and two-point model was compared for developed low-cost sensor system and found to be accurate and precise. (Mean Absolute Error, Root Mean Square Error, and Relative Absolute Error of 1.56%, 0.36, and 0.65 respectively). The field calibrated soil sensing system was compared with a commercial SM150T sensor for measuring VMC in a sugarcane field. The sensor position in root zone plays a significant role in irrigation scheduling. Therefore, HYDUS 2D model was used for calibration, validation, and simulation of moisture movement in the root zone. It was found that the sensor could be installed within 10 cm periphery of the emitter irrespective of the drip depth. The developed sensor system was installed in the sugarcane for irrigation scheduling. The water requirement of sensorbased irrigation was at par with the irrigation based on ETc. The sugarcane yield was 8% and 10% more in drip depth of 25 and 30 cm respectively as compared to 20 cm drip depth. Water deficit up to 10% produced sugarcane yield like ET based irrigation for plant crop. However, water deficit beyond 10% significantly reduced the sugarcane yield both in plant and ratoon crop. Hence, the low-cost capacitive soil moisture sensor system consistently worked very well for the entire period of field testing with no practical issues, so can be used in atomization of the irrigation system.
  • ThesisItemRestricted
    Senescence, nutrient remobilization and yield in wheat germplasm introgressed with Gpc-B1 gene
    (Punjab Agricultural University, Ludhiana, 2022) Jafar Tanin, Mohammad; Sharma, Achla
    The present breeding efforts are required to evaluate a set of germplasm with the Gpc-B1 gene in their genetic background. However, Gpc-B1 is the only recognized and cloned gene which explains 66% of the phenotypic variation for GPC. Therefore, it is essential to enrich our knowledge regarding its role in protein accumulation in wheat grain. On the other hand, the Gpc-B1 has a negative relationship with grain yield. This has made it difficult to create an elite wheat line that has both high GPC and a high yield. The accelerated senescence due to the presence of this gene shortens the grain filling period. We phenotyped the NILs for different phonological and yield-related traits, including number of days to flowering (DTF), plant height (PH), number of spikelets per spike (SPS), 1000-grain weight (TGW), yield, number of days to maturity (DTM), and grain protein content (GPC). An alpha-lattice design was used to do an analysis of variance, which showed that there were significant differences between the genotypes for all of the traits. The Gpc-B1 gene accelerated the flowering time and maturity time by about one day and two days, respectively, as compared to genotypes having no Gpc-B1 gene in their genetic background. Simultaneously, the same gene made the plant shorter by an average of 4.41 cm. The functional Gpc-B1 gene in the genetic background of the NILs increased the protein accumulation in wheat grain through an accelerated senescence and more efficient nitrogen transportation process, which was initiated earlier. But at the same time, the improvement in GPC could result in a grain yield penalty due to a reduction in grain size. A better understanding of how nutrients or chemicals change the function of wheat plants could help breeding programmes in the future. The NILs were evaluated under KNO3 and salicylic acid treatment and control (no KNO3 and salicylic acid application) conditions with the standard fertilizer application rate recommended by PAU for one year (2020–21). A combined analysis of variance using an alpha lattice design was conducted, which indicated significant variation among the studied traits, including DTF, PH, SPS, GPS, DTM, HI, GPC, Yield, and TGW. The potassium nitrate application significantly affected the PH, GPS, DTM, TGW, yield, HI, chlorophyll content in flag leaf at anthesis state and 30 DAA, and other traits. Salicylic acid application significantly affected the number of grains per spike (GPS), 1000-grain weight (TGW), yield, and number of days to maturity (DTM) as compared to the control experiment. This delay had no effect on GPC in NILs, but it did increase yield and traits related to yield, like TGW and GPS. A pooled analysis of variance using an alpha lattice design was conducted, which showed significant variation for all the traits under study. High GPC variation in lines with the same genetic background (PBW550) led to a lot of questions. To find the reasons for this variation, we isolated the high quality RNA of two high GPC NILs and two low GPC NILs. Differential gene expression analysis was carried out on each NIL as a control. A total of 1418 differentially expressed genes (DEGs) were discovered for the selected NIL across all three stages, out of which 1117 genes were upregulated while 301 genes were downregulated. This suggests their probable role in seed development.
  • ThesisItemRestricted
    Development of instant Khichdi mix using extrusion technology
    (Punjab Agricultural University, Ludhiana, 2022) Dolly; Baljit Singh
    “Khichdi” is an ancient Ayurvedic recipe which has been an integral part of Indian diet since ages. It is contemplated as a staple, well balanced and nutritionally wholesome meal that is an eminent source of nourishment in Ayurveda. Traditional foods like Khichdi are losing their place in our diet because of the lack in the availability of their pocket friendly convenience forms. Extrusion processing with versatile advantages is established as an attractive process that could be utilized for the instantization of such indigenous food products. So, the present research study was undertaken to explore the possibility of utilizing extrusion technology for the preparation of instant Khichdi mix in coherence with the standards outlined by Bureau of Indian standards, 1991. Seven improved and high yielding cultivars of rice (PR-114, PR-121, PR-122, PR-123, PR-124, PR-126 and PR-127) and one green gram cultivar (SML 668) were profiled in context of their dimensional, gravimetric, physico-chemical, technofunctional, and bio-functional and anti-oxidant properties. Followed by, the assessment of physicochemical, thermal, and rheological properties of rice cultivars with possible implications on their extrusion characteristics to screen them in context of their suitability for extrusion. Based on the investigated outcomes cultivar PR-122 was selected for the development of instant Khichdi mix. A response surface methodological approach was applied using Software Design expert version 13.0 (State-Ease Inc., Minneapolis, USA) to scrutinize the impact of various processing variables on process and product responses of instant rice and green gram. The indicated response ranges for optimization of instant rice were; Specific Mechanical Energy of (250-320 Wh/kg), expansion ratio of (2.90-3.20), bulk density of (207.46 – 392.78g/cc), water absorption index (6.52 – 8.41 g/g), water solubility index (26.984 – 33.803%), hydration power (250 – 305%), wettability (0.94 – 1.51min), hardness (159.74 – 165.72 N), breaking strength (42.78 – 51.32 N), L* value (65.04 – 75.12), a* value (2.7 – 3.14), and b* value (11.3 – 13.18). The optimized variables for instant rice and green gram were; feed moisture (1616.47 and 17-18%), screw speed (380-447 and 250-325rpm), and barrel temperature (139-150 and 147154ᵒC), respectively. Furthermore, in accordance with BIS 1991, the recipe for Khichdi was standardized (rice, green gram, edible fat i.e. ghee -8 g, salt - 4 g, cumin – 3.5 g, garlic – 2 g, and turmeric – 2.5 g). Five different blends having variable percentages of rice and green gram were prepared and analyzed for their physicochemical composition, In vitro starch, and protein digestibilities, bio-functional composition and antioxidant activities, microbial quality, and organoleptic quality. As per the results formulation with 60 % instant rice and 40% instant green gram was selected for a subsequent storage and shelf life study. Metallized polyester (90 μ) and polypropylene (75 μ) pouches were used for the comparative profiling of product’s shelf life (moisture content, water activity, free fatty acids, peroxide value, thio- barbituric acid values, and organoleptic quality (color, flavor, consistency, taste, and overall acceptance) for a period of 8 months. It was found that mixes packaged in metalized polyester were far more stable in comparison to polypropylene. Although the overall increase in peroxide value, fatty acid content and TBA values were nonsignificant, but the products in metallized polymer were found to be of superior in context of microbial and organoleptic qualities.
  • ThesisItemOpen Access
    Effect of agronomic manipulations on crop productivity and weed dynamics in poplar (Populus deltoides Bartr.) based agroforestry system
    (Punjab Agricultural University, Ludhiana, 2022) Parija, Bhadra; Navneet Kaur
    Present study entitled “Effect of agronomic manipulations on crop productivity and weed dynamics in poplar (Populus deltoides Bartr.) based agroforestry system” was carried out at Punjab Agricultural University, Ludhiana and KVK, Roopnagar (Experiment I) during 2017- 18 and 2018-19. Experiment I consisted of crop establishment methods of wheat viz. two methods of sowing (line sowing and broadcasting) and two seed rates (100 kg/ha and 125 kg/ha) along with five weed control treatments viz. carfentrazone 20 g/ha, pinoxaden 50 g/ha, clodinafop+metribuzin 270 g/ha, weed free check and weedy check in factorial RBD with 3 replications. The age of the poplar tree was 4 years in Ludhiana with 12.4 m height and 15.8 cm diameter at breast height (dbh) while at Roopnagar the age of the plantation was 3 years with an average 9.3 m height and 12.1 cm dbh during 2018-19. Experiment II consisted of planting geometry viz. two poplar spacings (8m×2.5m and 7m×3m, paired at 2.5m) and two potato planting geometry (65cm×18.5cm and 75cm×15cm) in main plots and weed control treatments (atrazine 0.250 kg/ha, metribuzin 0.350 kg/ha, paraquat 0.300 kg/ha, clodinafop+metribuzin 0.270 kg/ha, weed free check and weedy check) in sub-plots with three replications in split-plot design. The age of the poplar here was 6 years old with 19.6 m height and 26.5 cm DBH during 2018-19. The results of experiment I revealed that line sown wheat (38.0-42.8 q/ha) with higher seed rate of 125 kg/ha (37.3-41.5 q/ha) under weed free check (40.2-45.4 q/ha) had higher yield advantages with a greater number of effective tillers, spike length, grains/ear and 1000-grain weight in comparison to broadcasted with lower seed rate wheat crop under the rest weed control treatments and it was statistically at par with clodinafop+metribuzin 270 g/ha (36.5-41.3 q/ha) applied treatments. The application of clodinafop+metribuzin 270 g/ha effectively reduced the weed count and biomass. In experiment II, poplar spacing of 8m×2.5m (263.5-272.0 q/ha) and potato planting geometry of 75cm×15cm (256.6-262.1 q/ha) recorded significantly higher potato tuber yield. Among the weed control treatments weed free check (294.9-302.9 q/ha) was at par with clodinafop+metribuzin 0.270 kg/ha (289.4-293.2 q/ha) in terms of potato tuber no., weight/hill and yield. These treatments have exhibited a higher weed smothering effect thereby subsequently reduced the weed seed bank and seed recruitment in both the experiments. All the herbicides used in both the experiments temporarily reduced the microbial population and their activity upto 90 days of application and then it recovered till harvesting of the intercrops.
  • ThesisItemOpen Access
    EVALUATION OF MORPHO-PHYSIOLOGICAL AND METAL ACCUMULATION POTENTIAL OF Salix alba L. AND Toona ciliata M. Roemer GROWN ON HEAVY METAL CONTAMINATED SOILS
    (Punjab Agricultural University, Ludhiana, 2022) Ravneet Kaur; Sharma, Rajni
    The present investigations were carried out to study the effect of lead (Pb), cadmium (Cd) and their combinations (Pb+Cd) on morpho-physiological and metal ccumulation potential of Salix alba and Toona ciliata during 2020 and 2021. Heavy metals induce negative effect on morphological and biomass attributes of both species, but Toona showed better survival percentage (>95%) than Salix (1, TF1 and TF>1). Further, heavy metal translocation and accumulation decreased in combinations as compared to single element application suggesting the antagonistic relationship among both metals. Pb and Cd negatively affect the plant nutrient content either by affecting their translocation or by decreasing nutrient availability in soils. Anatomical studies showed significant alterations in stomatal pore size, stomatal density and trichome density due to heavy metal toxicity in both Salix and Toona. Field emission scanning electron microscopy and energy dispersive x-ray spectroscopy (FESEM-EDS) results confirmed the Pb and Cd accumulation sites in the leaves and root tissues of plants. Fourier transformed infrared (FTIR) spectroscopy analysis revealed that Pb and Cd accumulation in plants induced changes in carboxy, amino, hydroxyl and phosphate groups that ultimately caused alteration in physiological functioning in plants. Conclusively, both Salix alba and Toona ciliata have potential to be used as remediation species for Pb and Cd contaminated soils.