Senescence, nutrient remobilization and yield in wheat germplasm introgressed with Gpc-B1 gene

Loading...
Thumbnail Image
Date
2022
Journal Title
Journal ISSN
Volume Title
Publisher
Punjab Agricultural University, Ludhiana
Abstract
The present breeding efforts are required to evaluate a set of germplasm with the Gpc-B1 gene in their genetic background. However, Gpc-B1 is the only recognized and cloned gene which explains 66% of the phenotypic variation for GPC. Therefore, it is essential to enrich our knowledge regarding its role in protein accumulation in wheat grain. On the other hand, the Gpc-B1 has a negative relationship with grain yield. This has made it difficult to create an elite wheat line that has both high GPC and a high yield. The accelerated senescence due to the presence of this gene shortens the grain filling period. We phenotyped the NILs for different phonological and yield-related traits, including number of days to flowering (DTF), plant height (PH), number of spikelets per spike (SPS), 1000-grain weight (TGW), yield, number of days to maturity (DTM), and grain protein content (GPC). An alpha-lattice design was used to do an analysis of variance, which showed that there were significant differences between the genotypes for all of the traits. The Gpc-B1 gene accelerated the flowering time and maturity time by about one day and two days, respectively, as compared to genotypes having no Gpc-B1 gene in their genetic background. Simultaneously, the same gene made the plant shorter by an average of 4.41 cm. The functional Gpc-B1 gene in the genetic background of the NILs increased the protein accumulation in wheat grain through an accelerated senescence and more efficient nitrogen transportation process, which was initiated earlier. But at the same time, the improvement in GPC could result in a grain yield penalty due to a reduction in grain size. A better understanding of how nutrients or chemicals change the function of wheat plants could help breeding programmes in the future. The NILs were evaluated under KNO3 and salicylic acid treatment and control (no KNO3 and salicylic acid application) conditions with the standard fertilizer application rate recommended by PAU for one year (2020–21). A combined analysis of variance using an alpha lattice design was conducted, which indicated significant variation among the studied traits, including DTF, PH, SPS, GPS, DTM, HI, GPC, Yield, and TGW. The potassium nitrate application significantly affected the PH, GPS, DTM, TGW, yield, HI, chlorophyll content in flag leaf at anthesis state and 30 DAA, and other traits. Salicylic acid application significantly affected the number of grains per spike (GPS), 1000-grain weight (TGW), yield, and number of days to maturity (DTM) as compared to the control experiment. This delay had no effect on GPC in NILs, but it did increase yield and traits related to yield, like TGW and GPS. A pooled analysis of variance using an alpha lattice design was conducted, which showed significant variation for all the traits under study. High GPC variation in lines with the same genetic background (PBW550) led to a lot of questions. To find the reasons for this variation, we isolated the high quality RNA of two high GPC NILs and two low GPC NILs. Differential gene expression analysis was carried out on each NIL as a control. A total of 1418 differentially expressed genes (DEGs) were discovered for the selected NIL across all three stages, out of which 1117 genes were upregulated while 301 genes were downregulated. This suggests their probable role in seed development.
Description
Keywords
Citation
Jafar Tanin, Mohammad (2022). Senescence, nutrient remobilization and yield in wheat germplasm introgressed with Gpc-B1 gene (Unpublished Ph.D. Dissertation). Punjab Agricultural University, Ludhiana, Punjab, India.
Collections