Development of native Rhizobium compatible enriched compost for use in Lentil (Lens culinaris Medik.) grown in Acid Soil.

dc.contributor.advisorThakuria, Dwipendra
dc.contributor.authorSangma, Christy Berylnight K.
dc.date.accessioned2023-10-13T14:48:00Z
dc.date.available2023-10-13T14:48:00Z
dc.date.issued2018-09
dc.description.abstractThe benefit of Rhizobium inoculation in pulse crops grown near neutral to slightly acidic soils is well known. The promotion of pulse crops, especially lentil (Lens culinaris Medik.) in acid soils of North East India is very challenging due to poor nodulation efficiency and nitrogen fixation in strongly acid soils. Out of several causes, the development of acidity tolerant Rhizobium strain and build-up of Rhizobium population near the germinating seeds (spermosphere) in acid soils are challenging tasks. This investigation aimed at the development of effective native Rhizobium leguminosarum strain tolerant to acid soil and delivery of the effective Rhizobium strain through enriched compost to the soil. In order to prepare enriched compost, effective cellulose degrading bacteria (CDB) were screened and the most effective one used for preparation of compost followed by its enrichment by application of efficient Rhizobium strain and phosphate solubilising bacteria (PSB) along with rock phosphate (RP). Cellulose degrading bacteria were isolated from the forest floor litters of jhum cycles 2, 5, 10, and 20 years using cellulose agar medium (CAM) and were screened for cellulase activity in agar plates containing carboxy-methyl-cellulose (CMC) as substrate. Out of 32 CDB isolates, the most effective one (CDM-C1) was used for enrich compost preparation. Pea plant grown in 4 soil types (organic farm plot of ICAR, Umiam; Monabari, Garo Hills; Soils from Upland Lowland of CPGS farm fields) were screened for nodules. R. leguminosarum bv. viceae isolates were grow non Yeast Extract Mannitol Agar (YEMA). R. leguminosarum isolates were further confirmed on CRYEMA containing congo red. Four native Rhizobium isolates (NR1, NR2, NR3 and NR4) including one reference exotic strain (ER), Rhizobium leguminosarum CK1 (obtained from AINP Solan Centre, Dr. YSPUH & F, Solan, HP,India) were screened for nodulation efficiency and yield enhancement on lentil crop grown in a pot experiment using an acid soil (pH 5.25). The treatment combinations of the pot experiment were: (1) SRE 1: negative control (no Rhizobium inoculation)+50%RDF (@ 10:30:10 kg N-P-K ha-1), (2) SRE 2: positive control(CK1)+50% RDF, (3) SRE 3: NR1+50%RDF, (4) SRE 4: NR2+50%RDF, (5) SRE 5:NR3+50%RDF and (6) SRE 6: NR4+50%RDF. The treatment SRE4 (native Rhizobium NR2) performed best in terms of plant height, no. of branches, nodulation efficiency and yield compared to other treatments (P≤0.05, one-way ANOVA). Inoculum of the most effective CDM-C1 isolate was applied into mixed biomass (Eupatorium spp., Ambrosia spp. and broom grass and crop residues like rice straw, maize stalk and banana leaves) for preparation of compost in standard pits (each pit size was 1m x 1m × 1m) by imposing 5 treatments: (1) Normal compost 1 (EC1), (2) enriched compost (EC 2): RP+PSB compost, (3) enriched compost (EC 3): NR2 compost (4) enriched compost (EC 4): RP+PSB+NR2 compost, and (5) enriched compost (EC 5): RP+PSB+ER(CK1) compost. The compost quality and nutrient contents (E4/E6, ash content and alkalinity, germination percentage and index, N, Pand K content, pH and EC) values indicated that EC4 and EC5 composts were better than EC1 and other enriched compost. A field experiment on lentil crop (variety PL-8)was conducted in the ICAR Experimental Farm, Umiam with 9 treatments combination:T1: 100% RDF (@20:60:20 kg N-P-K ha-1), T2: 50% RDF, T3: seed inoculation (SI) with NR2+EC 1+50% RDF, T4: SI with ER (CK1)+EC 1+50% RDF, T5: SI with NR2+EC 2+50% RDF, T6: SI with ER (CK1)+EC 2+50% RDF, T7: SI with NR2+EC 4+50% RDF, T8: SI with ER (CK1)+EC 5+50% RDF, T9: SI with NR2+ EC 3+50% RDF. The nodulation efficiency was the highest in T5 followed by T7. Pod and seed yield were the highest in T5 followed by T7 and these treatments received enriched compost amended with native Rhizobium (NR2), PSB and RP. Overall, it can be concluded that enriched compost amended with native Rhizobium, PSB and RP showed great potential in supporting higher nodulation efficiency and yield of lentil crop grown under acid soil. Key words: Cellulose decomposer; Jhum; native Rhizobium; Acid soil; Pulse promotion; Lentil.en_US
dc.identifier.urihttps://krishikosh.egranth.ac.in/handle/1/5810198839
dc.keywordsCellulose decomposer; Jhum; native Rhizobium; Acid soil; Pulse promotion; Lentil.en_US
dc.language.isoEnglishen_US
dc.pages[25], 134p.en_US
dc.publisherCollege of Post Graduate Studies in Agricultural Sciences, CAU-Imphal, Umiamen_US
dc.subSoil Science and Agriculture Chemistryen_US
dc.themeAcademic Researchen_US
dc.these.typePh.Den_US
dc.titleDevelopment of native Rhizobium compatible enriched compost for use in Lentil (Lens culinaris Medik.) grown in Acid Soil.en_US
dc.typeThesisen_US
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Christy Berylnight K Sangma.pdf
Size:
8.33 MB
Format:
Adobe Portable Document Format
Description:
PhD
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections