Development and characterization of rare earth oxide-polypyrrole nanocomposites

Loading...
Thumbnail Image
Date
2018-08
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
G.B. Pant University of Agriculture and Technology, Pantnagar - 263145 (Uttarakhand)
Abstract
A series of rare earth oxides (REOs)/polypyrrole (PPY) nanocomposites (RPCs) were synthesized through surfactant assisted chemical oxidative polymerization. The polymerization was followed by blending pyrrole with REOs at various concentration ranging 7 to 21 (%, w/w). For this purpose, REOs selected were Ho2O3 and Er2O3. RPCs were characterized through fourier transformed infra-red, X-ray diffraction, energy-dispersive spectra, atomic force, scanning electron microscopy (SEM), simultaneous thermogravimetric-differential thermal analysis-differential thermogravimetry and cyclic voltammetry. Semiconducting behaviour of electrodes derived from PPY and RPCs was investigated from 298 to 393K at selected voltages. Electrodes derived from PPY show semiconducting behaviour with DC conductivity (σ DC, mS/cm) ranging 1.94–292.95. Under identical conditions, electrodes derived from Ho2O3 and Er2O3 display σ DC in the range of 2.61-534.87 and 2.31-475.89 respectively. Simultaneous imaging of electrodes during temperature regulated σ DC measurements through SEM reveals thermal stability of electrodes in the range of 353 to 373K. Cyclic voltammetry (CV) in combination with DC polarization reveals electroactive nature of electrodes, that was increased with concentration and nature of REOs. In general, electrodes derived from Ho2O3 display improved semiconducting, electrochemical behavior and controlled rate of corrosion over Er2O3 electrode. The present study delivers method of fabrication of electrodes for semiconducting and electrochemical applications.
Description
Keywords
null
Citation
Collections