Qualitative assessment of okra seed based on capsule position

Loading...
Thumbnail Image
Date
2023-12-21
Journal Title
Journal ISSN
Volume Title
Publisher
Seed Science and Technology, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia – 741252
Abstract
Okra is an important vegetable crops, belongs to family Malvaceae that is extensively grown throughout the world in tropical, subtropical, and warm temperate climates. It is a good source of fiber, vitamins C and K, and minerals such as potassium and magnesium. Okra plants produce multiple capsules either on main stem or side branch. It was reported that a smaller number of capsule was produced when grown for seed production purpose than in case of vegetable purpose. The size, shape, and texture of the seed are significantly influenced by the location of the capsule on stem and branches. The seed quality in capsule produced on main stem and side branches are also determined by various factors, including genetics, environmental conditions, and cultural practices. In the present experiment manipulating the position and number of capsule produced on main stem and side branches was a practiced through termination of apical growth by de-topping operation at ten days after first flowering. The field experiment was conducted during post kharif 2022 at C-Block Research Farm, Kalyani (Nadia) in West Bengal by considering eight genotype, two plant type (Normal and De-topped plant) and also two branching conditions. (Main stem and Side Branch) following factorial randomized block design (RBD). Evaluation of phenological characters revealed that the T1 (normal plant) was prominent in most of the cases though T2 (de-topped plant) was prominent in capsule weight in addition to capsule number and 1000 seed weight. Similar to this, capsule demonstrated a notable impact of detopping on its capsule weight, capsule wall weight, and capsule number. Branching conditions revealed superiority of main branch (B1) in most of the cases though B2 (side branch) was prominent in days to flowering, capsule length, and capsule volume. Among the genotype, V4 was prominent for seed and capsule weight, V7 was dominant on capsule and seed number. Other promising genotypes included V8, V3, and others when taking into account various elements including plant type (T1/T2) and branching position (B1/B2). Although there was a non- significant delineation in the seed yield per plant, the interacted values revealed significant results in the majority of the cases. Physiological performances of seed revealed the superiority in T2 (de-topped plant) with an exception in germination and speed of germination. The vigour of the produced seed in de-topped plants was prominent in the final results (vigour index-I and vigour index-ii), where T2 (de-topped plant) was the best considering its capsule position on B1 (main stem). The biochemical parameters that took into account their activity was examined, and T2 (the de-topped plant) and main stem (B1) came out on top for soluble protein peroxidase and alpha amylase. Based on present findings, it is to conclude that de-topping at the proper time may leads to more growth of lateral branches, which results in improved photosynthetic efficiency and a positive impact on reproductive growth, which in turn improves seed yield and quality.
Description
Keywords
Citation
Collections