Loading...
Thumbnail Image

Kerala Agricultural University, Thrissur

The history of agricultural education in Kerala can be traced back to the year 1896 when a scheme was evolved in the erstwhile Travancore State to train a few young men in scientific agriculture at the Demonstration Farm, Karamana, Thiruvananthapuram, presently, the Cropping Systems Research Centre under Kerala Agricultural University. Agriculture was introduced as an optional subject in the middle school classes in the State in 1922 when an Agricultural Middle School was started at Aluva, Ernakulam District. The popularity and usefulness of this school led to the starting of similar institutions at Kottarakkara and Konni in 1928 and 1931 respectively. Agriculture was later introduced as an optional subject for Intermediate Course in 1953. In 1955, the erstwhile Government of Travancore-Cochin started the Agricultural College and Research Institute at Vellayani, Thiruvananthapuram and the College of Veterinary and Animal Sciences at Mannuthy, Thrissur for imparting higher education in agricultural and veterinary sciences, respectively. These institutions were brought under the direct administrative control of the Department of Agriculture and the Department of Animal Husbandry, respectively. With the formation of Kerala State in 1956, these two colleges were affiliated to the University of Kerala. The post-graduate programmes leading to M.Sc. (Ag), M.V.Sc. and Ph.D. degrees were started in 1961, 1962 and 1965 respectively. On the recommendation of the Second National Education Commission (1964-66) headed by Dr. D.S. Kothari, the then Chairman of the University Grants Commission, one Agricultural University in each State was established. The State Agricultural Universities (SAUs) were established in India as an integral part of the National Agricultural Research System to give the much needed impetus to Agriculture Education and Research in the Country. As a result the Kerala Agricultural University (KAU) was established on 24th February 1971 by virtue of the Act 33 of 1971 and started functioning on 1st February 1972. The Kerala Agricultural University is the 15th in the series of the SAUs. In accordance with the provisions of KAU Act of 1971, the Agricultural College and Research Institute at Vellayani, and the College of Veterinary and Animal Sciences, Mannuthy, were brought under the Kerala Agricultural University. In addition, twenty one agricultural and animal husbandry research stations were also transferred to the KAU for taking up research and extension programmes on various crops, animals, birds, etc. During 2011, Kerala Agricultural University was trifurcated into Kerala Veterinary and Animal Sciences University (KVASU), Kerala University of Fisheries and Ocean Studies (KUFOS) and Kerala Agricultural University (KAU). Now the University has seven colleges (four Agriculture, one Agricultural Engineering, one Forestry, one Co-operation Banking & Management), six RARSs, seven KVKs, 15 Research Stations and 16 Research and Extension Units under the faculties of Agriculture, Agricultural Engineering and Forestry. In addition, one Academy on Climate Change Adaptation and one Institute of Agricultural Technology offering M.Sc. (Integrated) Climate Change Adaptation and Diploma in Agricultural Sciences respectively are also functioning in Kerala Agricultural University.

Browse

Search Results

Now showing 1 - 9 of 47
  • ThesisItemOpen Access
    Optimization of agronomic resources for maximizing grain and mill yield of rice
    (Department of Agricultural Engineering, Indian Institute of Technology, Kharagpur, 1976) Kannan, Mukundan; KAU; Pande, H K
    An investigation was planned during the main growing season, i.e., ‘aman’ (June to November ) to find out the optimum levels of the major inputs for rice cultivation such as nitrogen, phosphate, and water, associated with the management practices like optimum time of harvest, in order to maximize production and to obtain quality paddy which, when processed, should give a high quality rice and thereby high economic return. Keeping the above points in view, four field experiments were conducted during two consecutive ‘aman’ seasons of 1972 and 1973 in a cultivators’ field at abhoy Ashram, Balaramapur which is located about 3 km south – east of the Institute. The farm soil was silty – clay – loam, having a pH of 8.1. The experiments were conducted with the high – yielding rice variety IR 22 to study its performance under three levels each of nitrogen, phosphate and submergence and laid out in 3 x 3 x 3 confounded design. Nine additional plots to accommodate ‘o’ levels of nitrogen and phosphate were included for fitting production functions. In the first year of experimentation, the nitrogen and phosphate levels were 60, 120 and 180 kg/ha and 30, 60 and 90 kg/ha respectively. In the second year, the levels were 60, 90 and 120 kg N/ha and 30, 45 and 60 kg P2O5/ha. The modification in the levels of nitrogen and phosphate, in the second year, were made on the basis of the findings of the first year of experimentation. In both the years, the levels of submergence were kept constant, i.e., 0 – 5 cm, 5 + 2 cm, and 10 + 2 cm. For finding out the optimum grain moisture at harvest, suitable for higher milling yield, the crop was harvested at 25.5 – 22.5, 22.5 – 19.5 – 16.5 and 16.5 – 13.5 per cent grain moisture. The optimum levels of each input for maximizing grain yield and head yield were found out by fitting production functions. To identify a suitable variety under a specific management of production and processing, four high yielding rice varieties – Sona, Jayanthi, Pankaj and IR 22 were grown in ‘aman’ season of 1972 and 1973 with similar levels of nitrogen and phosphate as mentioned in Experiments 1 and 2; an additional treatment, with nitrogen and phosphate at ‘o’ level was also included. These experiments were laid out in 4 x 4 x 4 confounded design. The crop was grown under continuous submergence of 5 +2 cm and was harvested at grain moisture content ranging between 19.5 and 16.5 per cent. Treatment wise experimental details and the salient findings are given in the following pages. Positive response with reference to grain yield, total mill yield and head yield of variety IR 22 was noted up to 90 kg N/ha and 45 kg P2O5/ha. Further increase in nitrogen and phosphate levels to 120 kg/ha and 60 kg/ha respectively did not and its percentage was minimized by harvesting the crop above 19.5 per cent grain moisture or between 26 and 30 days after flowering. However, by increasing the level of nitrogen from 90 to 120 kg/ha and 120 to 180 kg/ha, the head yield and its recovery percent was less affected even when the crop was harvested with some delay, i.e., between 19.5 and 16.5 per cent grain moisture or between 35 and 37 days after flowering. The influence of phosphate on grain yield and milling quality, particularly head yield recovery percentage, was more pronounced when considered in combination with grain moisture at harvest. A suitable water management practice, of growing the crop with shallow submergence of 5 + 2 cm was found beneficial in increasing the yield as well as the milling and head yields. The influence of submergence on the head yield recovery percentage was, however, not to the same extent as that of nitrogen and grain moisture at harvest. On fitting the function, for variety IR 22, it could be ascertained that maximum grain yield to the extent of 5112 kg/ha can be attained with the optimum levels of 119 kg N/ha, 59 kg P2O5/ha, 149 cm of water and 22.4 per cent grain moisture at harvest which corresponded to harvesting the crop about 30 days after flowering. On the other hand, maximum head yield to the extent of 3562 kg/ha can be attained with the optimum levels of 124 kg N/ha, 51 kg P2O5/ha, 159 cm of water and around 26 per cent grain moisture at harvest which corresponded to harvesting the crop about 26 days after flowering. The grain yield and consequently, the gross and net returns were maximum under the same levels of nitrogen, phosphate, submergence and grain moisture at harvest. However, from an assessment of rough rice and polished rice along with broken, bran and husk, it was ascertained that the increase in net return to the extent of 984 k/ha was possible only by processing the rough rice. The positive response in grain yield of all the varieties was found only up to 90 kg N/ha and 45 kg P2O5/ha. In varietal comparison, grain yield, mill yield, head yield and net return were found to be maximum in case of the variety Pankaj, amounting to 5192 kg/ha, 3768 kg/ha, 3027 kg/ha and 1716 Rs/ha respectively. The variety Pankaj was followed by IR 22, Sona and Jayanthi in order. However, in milling quality, particularly head yield recovery percent, IR 22 was found superior to all the other varieties. Further, the variety IR 22, with along and slender grains, proved superior in quality to Pankaj, with long and bold grain. The former, eventually, has higher market value that brought higher return. These characteristics in IR 22 narrowed the difference in profit, when compared to Pankaj, though the latter has significantly higher grain yield the additional net return over milled rice was estimated at 877 Rs/ha in case of IR 22 and 833 Rs/ha in case of Pankaj. The agro – climatic conditions of this region of West Bengal, where rice is the only crop during ‘aman’, provide better prospects for cultivation of variety IR 22 as well as Pankaj. In quality criteria as well as growing period, IR 22 may prove superior to Pankaj. Their cultivation for higher yield and quality rice is possible only through suitable levels of fertility and water inputs as well as management input which includes the timeliness of operations, particularly harvesting, because it has a greater impact on the final outturn of the produce as quality rice.
  • ThesisItemOpen Access
    Design and development of a propeller pump
    (Department of Agricultural Engineering, College of Horticulture, Vellanikkara, 1984) Sasi, K; KAU; Remadevi, A N
    “Petti and Para” a crude form of Axial flow pump is used in Kerala for dewatering agricultural fields. It is being fabricated by local blacksmiths and there is no scientific design for the pump. For low head high discharge conditions Petti and Para is very effective, but less efficient because of faulty construction. The broad objective of the project was to develop an axial flow pump with improved efficiency which could be economically used for dewatering and for lift irrigation purposes under low head conditions. In this investigation, a good amount of attention was given to the fluid dynamics inside the axial flow pump and theoretically studied the combined affect of various parameters involved in the design of an axial flow pump. Then the parameters were compared with the approximate values given by the various researchers in the field. The requirement of the pump to be designed, at field conditions, were studied thoroughly and an one dimensional design was done. After designing and fixing the dimensions, the pump was fabricated in the Kerala Agricultural University Research Workshop at Mannuthy. Because of the lack of facilities in the Research Workshop, it was tested in the hydraulics laboratory at the Government Engineering College, Trichur. The power unit used was a 15 HP electric motor. The accessories used to measure discharge and head were a rectangular notch with Hookgauge and water manometer respectively. Testing was done with two levels of water above the impeller, one 20 cm above the impeller and the other 10 cm above the impeller. For the above two conditions, at designed head (1.5m) the maximum efficiencies obtained were 33 per cent and 29.5 per cent at discharge 121 lit/sec. and 114 lit/sec. respectively. The maximum working capacity was 165.19 lit/sec. against a head of 1 m with an efficiency of 31.95 per cent (20 cm above the impeller) In the three bladed pump, the blades were fixed to the hub by welding it to the suitably shaped (curved) M.S flats and then bolting the curved M.S. flats to the hub. The blades were twisted from 160 to 240 in a uniform variation by simple blacksmithy. The efficiency of the pump can be increased by using perfectly curved blades, which reduces eddies and skin friction. Comparing with the existing Petti and Para made by local blacksmiths, it is found that the pump is cheap as well as efficient.
  • ThesisItemOpen Access
    Mechanical control of the floating type aquatic weed salvinia wolesta (African payal)
    (Department of Agricultural Engineering, College of Horticulture, Vellanikkara, 1981) Sankaranarayanan, M R; KAU; Jose, Samuel
    Salvlnia molesta, locally known as ’African Payal‘ is a noxious floating type aquatic weed of common occurance, particularly in the State of Kerala in India* The infestation is the heaviest in the Kuttanadu region and in the Kole lands of Trichur District of the State, where alone more than 50,000 hectares of inland water surface is under the grip of this weed. In the present project, the possibilities of mechanical control of the Salvinia weed were investigated* The study concentrated on the development and evaluation of a prototype Salvinia harvesting Machine which utilised a novel design concept of fluidising the mass by means of a centrifugal* ejector pump combination* The machine consisted of two 5 H.P portable pumpsets as the prime mover and an ejector system mounted on a floating platform. The machine pump out the weed-water mixture into a floating filtering unit at zero lift from which the water was drained by gravity, the material was automatically loaded into a country boat. The results of tests conducted indicated that the 10 H.Pmachine was capable of pumping the Salvinia weed at an average rate of 16 T/hr at zero lift conditions. The proportion of the weed pumped was of the order of 15 % by weight of the secondary flow when pump¬ing water alone. The special features of this equipment were that it could utilise conventional Irrigation punpsets as the prime mover and that it did not allow the weed materials to be drawn into and clog the primary pump. The machine was also capable of being operated as a self propelled unit. In this project, certain accessory units such as a gather¬ing arm, a floating fence and an automatic filtering unit were also successfully developed and evaluated* In addition to load¬ing the material into a country boat, a disposal technique of pumping the weed materials into a field fermentation pond, which avoided any immediate transportation costs for the harvested material, was also investigated. It was found that the bulk density of Salvinia was of the order of 400 kg/n3. It was also found that the spread density value of the weed, depending on the stage of growth and degree of packing, could vary from 8 T/ha to 32 T/ha. A representative value for the spread density, under the still water condition at Kuttanadu, was found to toe of the order of 16 T/ht. This meant that the prototype Salvinia Harvesting Machine would be capable of clearing the weed from a hectare in 10 working hours* The estimated cost of such an operation amounted to Rs.280/- per hectare which compared favourably with the reported costs of Rs.900/- to Rs.2700/- per hectare for manual collection and disposal of the weed. It is considered that the present work is a signi¬ficant contribution to solving the problem of African Payal infestation in Kerala State.
  • ThesisItemOpen Access
    Bionomics And Host Range Of American Serpentine Leaf Miner liriomyza trifolii (burgess) (agromyzidae :diptera)
    (Department of Agricultural Entomology, College of Horticulture,Vellanikkara, 2003) Smitha, M K; KAU; Maicykutty Mathew, P
    The present investigation on the "Bionomics and host range of American serpentine leaf miner, Liriomyza trifolii (Bugcss) (Agrornyzidae: Diptera)" was undertaken in the Department or Entomology, College of Horticulture, Vellanikkara during 2001-2002. Field surveys and laboratory studies were carried out with the objective of studying the biology, host range, natural enemies and seasonal incidence of L. trifolii. The biology of L. trifolii was studied by releasing a pair of one day old adult l1ies 10 the rearing cages where cow pea seedlings were kept as host plants and honey as a food source. The female Ily inserted its eggs in the tubular punctures made on the leaves with its pointed ovipositor. The oval, translucent, milky white eggs hatched in about 2.08 days. The larvae mined the upper leaf surface and produced characteristic serpentine mines. There were four larval instars having a total duration of 3.4days. Alter the larvae attained full size or 2.35 mm length and (),(i4 mill width it made a semicircular cut at the broad end of the leaf mine. Through this cut larva came out of the mine and fall down to the soil for pupation. Inside the soil the larva turned to golden yellow coloured pupa. Female pupa was larger compared to male pupa. Adult emergence took place after 7.9 days. The adults had a longevity varying form 4.5days for mall's and 7.4 days for females where as they were feed with 2 per cent honey solution. Adult females were larger than the males and had black pointed spot on the lower sick of last abdominal segment. The fecundity of female varied from 14.6 eggs per day per female. The adult female laid about 48-5'0 eggs in its life time. The ratio or oviposition or feeding puncture was I: R.QC) to 1: 9.3. The total life cycle from eggs to adult took 13.3 days. The host range was studied by conducting surveys at regular intervals. 48 host plants belonging to 13 plant families were reported as host plants of this pest. It is a highly polyphagous insect and majority or the host plants belonged to families of Cornpositac and Cucubitaccae. The intensity of infestation of 1.. trifolli on various crops were calculated by counting the number of larval mines per leaf on the upper, middle and lower leaves of the plants. The attack of L. trifolt! was more on the lower leaves compared to middle and top leaves. Cowpea was found to be the most preferred host plant of L. trifolii followed by ash gourd, ridge gourd, tomato, pumpkin and cucumber. Among the ornamentals dahlia and marigold were severely damaged by this leaf miner. The intensity of infestation per unit area was maximum on tomato (l.74 mines per cm2) followed by cowpea (1.14 mines per cnr'). The number of mines per unit area was lowest for pumpkin (0.33 mines per ern"). In the studies on the seasonal incidence of L. trifolii two peak periods of infestation was observed, one during November and the second during January. The leaf miner population was observed to be highest from second fortnight of November to second fortnight of April. A significant positive correlation of larval population with wind velocity, sunshine hours and evaporation rate was observed. Relative humidity and total rainfall had negative correlation with infestation of L. trifolii. Parasitisation of L. trifolii by larval and pupal parasitoids were observed and the percentage of parasitoids were observed and the percentage of parasitism was maximum during December, J,U1uaIY and February months coinciding with the peak infestation periods. These natural enemies can be effectively utilized for the management of L. trifolii.
  • ThesisItemOpen Access
    Optimum thresher parameters for high moist paddy
    (Department of Farm Power Machinery and Energy, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 1993) Hamza, Mollakadavath; KAU; Sivaswami, M
    The study undertaken by the newly development 1 hp paddy thresher to optimise its parameters for high moist paddy revealed that the peripheral velocity from 10.80 to 21.72 m/s on the rasp – bar, spike tooth, double directional spiral cylinders didn’t influence much on the threshing efficiency. When the moisture content was increased to 35 per cent, the threshing efficiency was brought down from 98.4 to 92 per cent for rasp – bar cylinder and was increased from 88 per cent to 94 per cent in the case of double directional spiral cylinder. The maximum threshing efficiency of 99 percent was achieved for spike tooth cylinder at 19.2 per cent moisture level. The maximum threshing efficiency of 94% and the maximum output of 340 kg/h were achieved with the double directional spiral cylinder when the moisture content was 35% per cent. The proto – type thresher was found to reduce the cost of threshing to 81 per cent and reduction in labour to 85.16 per cent compared to the manual threshing.
  • ThesisItemOpen Access
    Hydraulics of border strip irrigation on level or nearly levely rice fields
    (Department of Agricultural Engineering, College of Horticulture, Vellanikkara, 1983) Visalakshi, K P; KAU; George, T P
    In Kerala, more than seventy per cent of the double cropped rice fields lie fallow during summer months. Rice cannot be grown during this season because of the limited availability of water and the very low water use efficiency that can be attained during this season. The development of a technology for efficient use of limited water available during summer is necessary to make use of these rice fallows for cultivating crops other than rice. As most of the area is under paddy during first and second crop seasons, the level of the land cannot be disturbed. But now, there is no any satisfactory method of irrigation suitable for irrigating nearly level rice fallows. The objective of this project was to study the hydraulics of border strip irrigation in nearly level lands and to recommend suitable specifications. The experiment was done at the Agronomic Research Station, Chalakudy during 1981-82. It consisted of five replications of four treatments. The treatments were two widths of 4m and 6m combined with two discharge rates of 2 1/sec/m and 4 1/sec/m, the length of strip in all cases being 45m. The surface gradient was 0.03815 per cent in the direction of natural slope. Altogether seven irrigations were given at an interval of seven days. Blackgram seeds were dibbled in the field after the first irrigation and cultural practices as recommended in the package of practices were followed. The time of advance of waterfront, the depth of flow and the time of recession of tail water were observed at every 5m length for each strip. The cutoff length was chosen as 77 per cent from the upstream end. The hydraulic gradient, hydraulic resistance and velocity of flow for each irrigation were determined. The advance and recession curves were drawn. The results of the experiment revealed that a discharge rate of 2 1/sec/m is the best for irrigating nearly level borders of 4m and 6m widths. The depth of irrigation could be limited to 5 cm even in soils having high rate of infiltration. The lower discharge rate of 2 1/sec/m reduced the time of ponding at the downstream end and this minimized the wastage due to deep percolation at the downstream end. Soil erosion in the strip was minimum at this rate of discharge, and long strips upto 45m length in loamy sand could be irrigated with high degree of efficiency. As only a low rate of discharge is required to practice this method, even in areas having limited availability of water, an additional crop can be profitably raised. It is estimated that the water needed to raise one hectare of rice in summer months can be more profitably used to raise about 4 ha. of any other crop. Hence, growing rice during summer season should be discouraged and the land should be utilized to raise other remunerative crops like pulses, oilseeds and vegetables. Now the Government has decided to provide water not only for rice but also for other seasonal crops during the summer months. But now, there is no satisfactory method of irrigation for nearly level fields. Border strip method of irrigation is hardly practiced anywhere in Kerala, even though this is a very popular method in the other parts of India for raising cereals, pulses and oilseeds. However, this method is practiced there on sloping lands. Since the present study revealed that this method can be practiced efficiently on level or nearly level fields, this is best suited for the rice fallows during the dry season. Most of the paddy fields have a mild natural slope in one directions. This slope can be used to advantage by laying the strips in the direction of natural slope. This method can be recommended to the farmers for raising a crop in the rice fallows. The specifications of border strips for nearly level lands are as follows: _______________________________________ Length of border - Upto 45m Width of border - 4 – 6m Rate of flow - 2 1/sec/m Slope - should be laid in the direction of natural slope Height of bunds separating the strips - 20 cm Base width of bunds - 30 cm __
  • ThesisItemOpen Access
    Development of cocoa drier
    (Department of Agricultural Engineering, College of Horticulture, Vellanikkara, 1985) Abdassalam, M; KAU; John Thomas, K
    An investigation for the development of an electrically heated, multistage, agitation type cocoa drier, suitable for the Kerala conditions for drying of cocoa beans without impairing the quality, was conducted in the Agricultural Engineering Department of the College of Horticulture under the Kerala Agricultural University. The mini box fermentation method developed in Kerala Agricultural University was selected for fermentation of the beans. The fermented cocoa beans were dried in the sun. The process of sun drying continued upto seven days. The pH of dried beans was 5.2, which was very close to the pH range, 5.3 to 5.5 for good quality beans as per international standards. Hence, the quality of the beans was considered satisfactory. A bulb heated drier developed earlier in K.A.U. was tested* The capacity of the drier tested was 30 kg of fermented beans. The bean could be dried to the desired moisture content in 38 hours. The moisture content of the dried beans was about eight per cent. From the result it was found that for drying one kg of fermented beans approximately 0.760 K.W.H. of electrical energy was required. pH of the dried beans was 5.00. The bulb heated drier was modified and fitted with a 500 watts electric coil heater was also tested. Beans were dried to the desired moisture content in 34 hours. Moisture content of the dried beans was about eight per cent. The result showed that approximately 0.57 K.W.H. of electrical energy was required for drying one kg of fermented beans. The quality of the dried bean was satisfactory because pH of the dried beans was 5.0.The cost of drying per kg of fermented beans was Re.0.47. A modified C.P.C.R.I. model drier of capacity 60 kg of fermented beans was fabricated, tested and economics worked out. For attaining the required moisture content of about eight per cent, the time taken was 64 hours. The result revealed that approximately 0.533 K.W.H. of electrical energy and an amount of Re. 0.36, was required for drying one kg of fermented beans. pH of the dried bean was 5.1 and hence quality of the dried bean was also satisfactory. The modified C.P.C.R.I. model drier fitted with an half h.p. electric motor and a blower was also tested.Beans were dried to the desired moisture content in 42 hours. The result showed that for drying one kg of fermented beans approximately 0.610 K.W.H. of electrical energy was required. Cost of drying per kg of fermented bean was Re. 0.56, Quality of the dried bean was satisfactory since pH was 5.2. An agitation type electrically heated multistage drier of 90 kg capacity was designed, fabricated, tested and its economics was worked out. Tests were carried out with two quantities of cocoa (i.e. 90 kg, and 60 kg), 3 3 different quantity of air (i.e. 0.4 m /second, 0.2 m / second) and varying temperatures (i.e. 56°C, 47°C and 42°C). Air temperature and humidity at various sections of the drier were noted. Also the weight loss of the bean at every hour of drying was noted by using an infrared moisture meter, and the final pH of the dried bean by using a pH meter. From the experiment, using various quantities of beans, with different temperature and air flow, it was found that for drying 90 kg of cocoa beans a temperature of 47°C and air flow rate of 0,4 m3/sec was optimum, for this type of drier. The energy consumed/kg of bean was appromimately 0.69 K.W.H. The pH of the dried beans was found to be 5.3 and hence the quality of the dried bean was satisfactory. Cost of drying per kg of fermented bean was Re. 0.45. One of the objectives of this project was to evolve suitable design of an equipment for drying large quantities of cocoa beans. With this in view an agitation type multistage drier of 2000 kg capacity of fermented beans was designed. Prom the cost analysis it was seen that the cost of drying one kg of bean was only Re. 0.22. The cost of the drier was about Rs.23,000/-. The advantage of agitation type multistage drier are as follows. As the beans were moving in the drier better uniformity in drying was achieved and they were not exposed to high temperature continuously which helped in maintaining the quality of the beans. The drying time was reduced considerably. Energy consumption was less and cost of drying was only 50 per cent compared to other driers. Due to stage by stage drying the loss of heat is reduced and hence the thermal efficiency is high.
  • ThesisItemOpen Access
    Relative efficiency evaluation of drip and basin methods of irrigation in banana
    (Department of Agricultural Engineering, College of Horticulture,Vellanikara, 1985) Koshy, Vargees; KAU; Varkey, V K
    Well planned and efficiently utilised irrigation systems help to keep the food production in pace with the increasing population. Hence it is essential to design and adopt an efficient low cost economic irrigation system tailored to fit the local potential and needs. Out of the efficient methods of irrigation, drip method is the most promising. Drip irrigation is comparatively new to our country and needs popularisation. The relative efficiency and feasibility of a low cost drip irrigation system fabricated with the cheapest and locally available materials in relation to the conventional basin method of irrigation is tested in this experiment taking banana as the indicator crop. Plants were irrigated at the rate of 5, 10, 15 and 20 litres per day in both the methods of irrigation. Oil drums of 200 litres capacity were used as storage tanks for the drip irrigation system. 25 mm and 12 mm (dia) black low density polyethylene pipes were used for main and lateral lines respectively which were embedded at a depth of 20 cm below the ground surface. Micro-tubes of 2 mm diameter were used as drippers or emitters. The heart of this drip system was the distributor developed in K.A.U. which could deliver irrigation water at a slow rate of 1 to 2 litres per hour from each micro-tube. Physical characteristics of the soil and bio-metric observations of the plants were taken during the experiment. It was observed that there was no significant difference in the yield of plants under the drip and basin methods of irrigation. Similar results were obtained by Sivanappan et al. (1976) and Chennappa, (1977). The economy of the system was studied and it was found that, by adopting drip method of irrigation, there is a net saving of Rs. 4302 per year in one hectare. Weed growth was found to be less in the plots irrigated by drip method. Special skill is not required for the fabrication, installation, maintenance and operation of the K.A.U. drip irrigation system.
  • ThesisItemOpen Access
    Water balance study of Karuvannur river basin
    (Department of Irrigation and Drainage Engineering, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 1988) Santosh, G Thampi; KAU; John Thomas, K
    This study was undertaken to quantitavely assess the water resources of the Karuvannur River Basin and to study the monthly water balance in order to estimate the balance for ground waterrecharge or depletion during the period 1976 to 1985. The mean monthly rainfall over the basin during the period 1976-1985 was determined by Thiessen polygon method . Data regarding the amount of water released for irrigation from the Peechi reservoir was also collected. Due to lack of data, contribution from other sources was not taken into account. The total runoff from the basin during each month of this period was determined . The various crop combinations in the basin were identified and the area under each of these was estimated . The actual evapotranspiration during each month was estimated using the method outlined by Doorenbos and Kassam. The basin was regarded as an independent hydrologic unit . Hence surface and subsurface inflow and outflow were assumed to be negligible.