Loading...
Thumbnail Image

Govind Ballabh Pant University of Agriculture and Technology, Pantnagar

After independence, development of the rural sector was considered the primary concern of the Government of India. In 1949, with the appointment of the Radhakrishnan University Education Commission, imparting of agricultural education through the setting up of rural universities became the focal point. Later, in 1954 an Indo-American team led by Dr. K.R. Damle, the Vice-President of ICAR, was constituted that arrived at the idea of establishing a Rural University on the land-grant pattern of USA. As a consequence a contract between the Government of India, the Technical Cooperation Mission and some land-grant universities of USA, was signed to promote agricultural education in the country. The US universities included the universities of Tennessee, the Ohio State University, the Kansas State University, The University of Illinois, the Pennsylvania State University and the University of Missouri. The task of assisting Uttar Pradesh in establishing an agricultural university was assigned to the University of Illinois which signed a contract in 1959 to establish an agricultural University in the State. Dean, H.W. Hannah, of the University of Illinois prepared a blueprint for a Rural University to be set up at the Tarai State Farm in the district Nainital, UP. In the initial stage the University of Illinois also offered the services of its scientists and teachers. Thus, in 1960, the first agricultural university of India, UP Agricultural University, came into being by an Act of legislation, UP Act XI-V of 1958. The Act was later amended under UP Universities Re-enactment and Amendment Act 1972 and the University was rechristened as Govind Ballabh Pant University of Agriculture and Technology keeping in view the contributions of Pt. Govind Ballabh Pant, the then Chief Minister of UP. The University was dedicated to the Nation by the first Prime Minister of India Pt Jawaharlal Nehru on 17 November 1960. The G.B. Pant University is a symbol of successful partnership between India and the United States. The establishment of this university brought about a revolution in agricultural education, research and extension. It paved the way for setting up of 31 other agricultural universities in the country.

Browse

Search Results

Now showing 1 - 2 of 2
  • ThesisItemOpen Access
    Development of biofortified oyster mushroom (Pleurotus spp.) using Zinc Sulphate nanoparticle
    (G.B. Pant University of Agriculture and Technology, Pantnagar - 263145 (Uttarakhand), 2021-11) Shivani; Kushwaha, K.P.S.
    Pleurotus spp. commonly known as oyster mushroom in english and Dhingri in hindi, is one of the most important edible mushrooms cultivated in all around the world and is rich in nutritional as well as medicinal properties. Zinc is an essential trace element next to iron and its deficiency can lead to growth retardation, loss of appetite, and impaired immune function. Since the human body does not store excess zinc, it must be consumed regularly as part of the diet. Biofortification of food crops for increasing the zinc content and its bio-availability is one of the potential alternatives for combating zinc deficiency. The present study pertains to the development of zinc bio-fortified Pleurotus spp. (P. sajor-caju, P. florida and P. flabellatus) using zinc sulphate nanoparticles (ZnSO4 NPs). Zinc sulphate nanoparticles was sprayed at different concentrations (10 ppm, 20 ppm, 30 ppm and 40 ppm) after complete spawn run and nutritional and antioxidant properties of the fruiting bodies were analysed. The maximum mycelial radial growth and growth rate per day (mm) was obtained in all the tested species of Pleurotus at 10 ppm concentration of ZnSO4 NPs. Moreover, there was maximum increase in the growth parameters (pileus width, stipe length and stipe width), total yield and biological efficiency was obtained at10 ppm concentration of ZnSO4 NPs of as compared to the control. The highest increase in zinc content was obtained in 40 ppm concentration of ZnSO4 NPs i.e., 115.63% in P. sajor-caju followed by P. flabellatus (113.58%) and P. florida (106.35%). Similarly, at 40 ppm concentration of ZnSO4 NPs the phenol and flavonoid content was also found maximum. Whereas, the highest sodium and potassium content was bioaccumulated at 10 ppm concentration. The nutritional status of Pleurotus spp., measured in terms of crude protein, total ash and total soluble sugars, was found highest at 10 ppm concentration. The maximum increase in DPPH, ABTS and FRAP radical scavenging activity was observed at 10 ppm concentration of zinc sulphate nanoparticle. In case of, DPPH radical scavenging activity the highest increase was observed in P. sajor-caju followed by P. flabellatus and P. florida. Whereas, in case of ABTS radical scavenging activity the highest increase was obtained in P. sajor-caju followed by P. florida and P. flabellatus. Furthermore, in case of FRAP radical scavenging activity the highest increase was obtained in P. flabellatus followed by P. sajor-caju and P. florida. Therefore, Pleurotus spp. when biofortified with zinc sulphate nanoparticle at 10 ppm concentration has positive effect on the mycelial growth, biological efficiency, growth parameters, bioaccumulation of micronutrients, nutritional as well as antioxidant activities of Pleurotus spp. Thus, 10 ppm ZnSO4 NPs can be used for getting maximum yield of oyster mushroom and to combat zinc deficiency.
  • ThesisItemOpen Access
    Characterization of elite lines of bread wheat for rust (stripe and leaf) and powdery mildew resistance
    (G.B. Pant University of Agriculture and Technology, Pantnagar - 263145 (Uttarakhand), 2017-06) Shivani; Vishunavat, Karuna