Loading...
Thumbnail Image

Theses

Browse

Search Results

Now showing 1 - 3 of 3
  • ThesisItemOpen Access
    Efficacy assesment of bio-based nano materials of gypsum and rock phosphate in wheat (Triticum aestivum)
    (G.B. Pant University of Agriculture and Technology, Pantnagar - 263145 (Uttarakhand), 2014-08) Amit Kumar; Rajeew Kumar
    Three field experiments were conducted during rabi season of 2013-14 at N. E. Bourlag Crop Research Centre of Govind Ballabh Pant University of Agriculture & Technology, Pantnagar, (Uttarakhand), to study the effect bio based nano materials of gypsum and rock phosphate on phenology, morphology, physiology and yield of wheat and on soil microbes. The experimental site was sandy clay loam, and had organic carbon (0.72%), available nitrogen (216 kg/ha), available phosphorus (22 kg/ha) and available potassium (133 kg/ha). The soil reaction was slightly alkaline (pH 7.3). The wheat variety UP-2526 was used as test crop. Three sets of experiment having six, twelve and twelve treatments were laid down in randomized block design with three replications. In, first set of experiment the treatments were control, 50% RDF, 100% RDF, 125% RDF, 50 & 100% RDF applied with bio based nano materials. In second and third set of experiment RDF @ 50 % and 100 % were tested with different combinations of five biological based formulated nano minerals of gypsum (second experiment) and rock phosphate (third experiment) . The formulated nano minerals were clay based, parthenium based, FYM based, neem based, Vegetable peel based formulation of nano gypsum and nano rock phosphate. Results of first experiment revealed that plant height, dry matter accumulation, SPAD reading, green seeker value and grain yield obtained at 50% RDF with bio based nano materials, was statistically similar with 100% RDF. In experiment second, Tillers/m2, SPAD value, leaf area index, yield, and economics (gross return, net return, B: C ratio) observed highest under 50% RDF applied with clay based nano gypsum. In experiment third, Tillers/m2, dry matter accumulation, leaf area index, green seeker value, straw yield and bio logical yield observed highest under 50% RDF applied with vegetable peels based rock phosphate. From these experiments, it could be concluded that wheat crop performed better under 50% RDF applied with bio based nano materials, or 50% RDF applied with clay based nano gypsum or 50% RDF applied with vegetable peels based nano rock phosphate as compared to RDF without nano minerals. Therefore, we can save 50 % of our recommended fertilizer dose.
  • ThesisItemOpen Access
    Response of a new cultivar of Indian mustard (rgn-73) to fertility levels
    (G.B. Pant University of Agriculture and Technology, Pantnagar - 263145 (Uttarakhand), 2015-06) Amit Kumar; Mahapatra, B.S.
    In order to evaluate the growth, yield and quality of Indian mustard cultivar RGN- 73 at varying fertility levels under tarai conditions of Uttarakhand, a field experiment was conducted at the N.E. Borlaug Crop Research Centre of the G.B Pant University of Agriculture and Technology, Pantnagar (Uttarakhand) during Rabi season of 2014-15. The experiment was conducted on a silty clay loam soil with moderate availability of nutrients with twelve fertility levels of NPK (N: 60, 80 and 100kg/ha, P2O5: 20 and 40 kg/ha, K2O: 0 and 30kg/ha) with three replications. Different fertility levels of NPK did not have any significant influence on plant height at different stages of crop growth. However, dry matter accumulation, number of primary and secondary branches, LAI, CGR ant RGR showed significant effect of fertility levels applied with maximum in case of (100:40:30 N:P2O5:K2O) and minimum at lowest fertility levels (60:20:0 N:P2O5:K2O) applied. Yield and yield attributing characters along with biological yield and harvest index were also showed significant differences with fertility levels and like growth characters, highest values were also recorded in case of highest fertility levels (100:40:30 N:P2O5:K2O). At higher level of N (100 kg/ha), an increased P by 20 kg/ha and K by 30 kg/ha, resulted significant increase in seed yield of Indian mustard over 60:20:0 (N:P2O5:K2O). The similar was the results for NP and K uptake, B:C ratio. From the above study it could be inferred that N:P2O5: K2O levels of 100:40:30 produced maximum yield and showed highest B:C ratio under tarai conditions of Uttarakhand for the mustard variety RGN-73.
  • ThesisItemOpen Access
    Effect of nutrient sources on nitrogen mineralization, carbon storage and yield of turmeric under harda (Terminalia chebula) based agroforestry system
    (G.B. Pant University of Agriculture and Technology, Pantnagar - 263145 (Uttarakhand), 2017-06) Amit Kumar; Dwivedi, G.K.
    The present investigation was carried out for two years during 2015-2017 at Agroforestry Research Centre, G.B. Pant University of Agriculture and Technology (Haldi), Pantnagar. The experiment comprised of two farming systems (Harda open system) with eight treatments viz., Control, FYM, PM, WS, Vermicompost, NPK, Integrated 100 and 50%. The experiment was laid out in split plot design (SPD) with three replications, AF systems in the main plot and nutrient sources in sub plot treatments. The soil of the experiment site was silty clay loam having pH (7.15), EC (0.35 dSm-1), OC (0.80%) and available NPK 203.47, 16.68, 155.95 kg ha-1 respectively. The result of the experiment reveal that physical and chemical properties were significantly affected by farming systems as well as nutrient sources. The bulk density was recorded lower under AF system as compared to open one. Similarly, among nutrient sources the effect of organic sources was more pronounced as compared to NPK. SOC, available NPK status were also significantly increased due to nutrient sources as well as farming systems. SOC and available NPK increased by 28.6, 10.8, 42.7 and 13.6% respectively under harda AF system as compared to open system whereas increase of 27.0, 39.0, 52.0 and 20.1% of SOC, available NPK respectively were found under 100% integrated nutrient sources. The carbon stock (25%), CO2 evolution and carbon fractions were recorded higher under AF system than open system. The higher active and passive pools comprising of very labile, labile, less labile and non labile were recorded higher under farming system and NH4+ and NO3- fractions were also greatly influenced by farming system and nutrient sources. In turmeric crop, plant height, LAI, NPK content, uptake, rhizome yield, curcumin content and curing percentage were also greatly affected by the harda tree and nutrient sources. 100% integrated nutrient source recorded highest rhizome yield and was superior by 45.81 per cent over control. However, it decreased under harda tree. Curcumin content was also higher under harda tree system by 6.57%. There was an increment in tree height, DBH and crown width of harda tree by 9.42, 9.05 and 20.19 per cent respectively at the end of study period. It was also observed that harda tree produced 2.80 t ha-1 litter during the study. Therefore, it is concluded from the study that turmeric-harda tree system is a suitable agroforestry system where the overall yield of turmeric and harda as well as quality of the turmeric was greatly improved along with considerable improvement in the carbon stock and nitrogen mineralization.