Loading...
Thumbnail Image

Theses

Browse

Search Results

Now showing 1 - 4 of 4
  • ThesisItemOpen Access
    Morphometric analysis and landslide zonation mapping: a case study from Kumaon division of Uttarakhand
    (G. B. Pant University of Agriculture and Technology, Pantnagar, 2022-09) Bohra, Manoj Singh; Deepak Kumar
    The present study consists of morphometric analysis and preparation of the Landslide Zonation Map for the western Mid-Himalayan region in the Kumaon division of Uttarakhand. The study area i.e., the Kwarab-Khairna region is located in the Almora and Nainital districts of Uttarakhand, with a spatial extent from latitude 29°40ʹ55ʺ N to 29°22ʹ41ʺ N and longitude 79°24ʹ58ʺ E to 79°39ʹ21ʺ E, respectively. The morphometric analysis suggests that the area has an elongated shape with a very coarse drainage texture and subsoil with high permeability, dense vegetation cover and low relief. The drainage area is under the mature development stage with geologic structures having very little impact on the stream network. In the present work, a multi-criteria analysis technique is used for landslide zonation mapping. Thematic maps of different factors, namely slope, aspect, elevation, lineament density, drainage density, rainfall, geology, soil and land use/land cover were prepared and integrated into the GIS platform for the landslide zonation. The analytic hierarchy process was used to determine the weight values for each considered factor. The sub-classes of each thematic map were further rated on a scale from 0 to 9. The landslide zonation map of the Kwarab-Khairna region was produced using the weighted overlay technique. The zonation map divides the area into four zones, namely low, moderate, high and very high. The findings demonstrate that the majority of the area belongs to the moderate landslide zonation class. A significant finding emerged from the study that some of the important locations within the study area such as Khairna, Garampani, Suyalbadi, Suyalgaon, Kagdighat, Kainchi Dham and the NH connecting Almora-Nainital fall under the category of high and very high landslide zones.
  • ThesisItemOpen Access
    Hydrological response of a spring-fed mid-Himalayan micro-watershed using ArcSWAT
    (G.B. Pant University of Agriculture and Technology, Pantnagar, District Udham Singh Nagar, Uttarakhand. PIN - 263145, 2022-07) Joshi, Himanshu; Devendra, Kumar
    Morphometry and streamflow have always played a decisive role in the development of water resource programs, thus, making its quantification quite crucial. The present work attempts to determine the attributes of a spring-fed micro-watershed, i.e., Kosi R. headwaters, affecting its hydrological response via morphometric analysis, and using a hydrologic model named SWAT integrated over ArcGIS for the estimation of streamflow through facilely available topographical and hydro-meteorological data. The study area is located from latitude N29°50ʹ30ʺ to N29°52ʹ30ʺ and longitude E79°30ʹ30ʺ to E79°34ʹ30ʺ in the Almora district of Uttarakhand, with a spatial extent of 10.7 sq. km. The morphometric analysis suggests that the study area has a dendritic and sub-dendritic drainage pattern with a coarse drainage texture and large drainage density. The micro-watershed and the main channel slope are very steep (49.65 %) and steep (30.8 %), respectively, corresponding to lower infiltration and higher surface runoff with large flow velocities in the channel section. The drainage area is under the mature development stage, with the avg. HI of 0.495. The results from the SWAT and SWAT-CUP suggested that the developed model performed very well in simulating daily streamflow with the values of NSE, ɸ, and RSR of 0.88, 0.811, and 21.9 and 0.85, 0.86, and -3.8 for the calibration and validation period, respectively. Further, sensitivity analysis suggested that the curve number (CN2), available water capacity of soil layer (SOL_AWC()), and saturated hydraulic conductivity (SOL_K()) affect streamflow generation the most. The study also indicates that the surface runoff and ET are the prime processes of abstraction from the study area, with 49.79 % and 40.56 % of the annual precipitation escaping through these processes. The developed model thus provides a quantitative understanding of various hydrological processes occurring within the study area and can generate scenarios for identifying BMPs in soil and water conservation.
  • ThesisItemOpen Access
    Effect of temporally distributed rainfall patterns on runoff-sediment outflow from lands under sorghum and urad crops and with furrow treatment
    (G.B. Pant University of Agriculture and Technology, Pantnagar - 263145 (Uttarakhand), 2021-02) Atul Prakash; Akhilesh Kumar
    In this study, laboratory experiments were conducted to assess the effect of temporally distributed rainfall patterns namely, Uniform rainfall distribution pattern (URDP), Advanced rainfall distribution pattern (ARDP), Delayed rainfall distribution pattern (DRDP) and Intermediate rainfall distribution pattern (IRDP) considering Sorghum and Urad crop lands and also lands treated with along the slope furrow and across the slope furrow on total runoff, average runoff rate, average sediment concentration and average sediment outflow rate under at selected land slopes. The observations were also analyzed to assess the efficacy of above soil biomass and below soil biomass of these cropping systems on runoff and sediment outflow. This study was conducted on experimental plots using artificially generated rainfall with the help of a rainfall simulation system of 3 m × 1 m size. Rainfall distribution pattern were created by using simulated rainfall and the simulator was operated for 30 minutes to provide a total rainfall of 4.4 cm depth. A comparison of observed values of runoff rate and sediment concentration for whole plant plot and below soil bio mass plot clearly revealed that the for whole plant plot, the lowest runoff rate occurred for URDP while the lowest value of sediment concentration was found in case IRDP at 4% land slope. For 8% land slope, the maximum average runoff rate and sediment concentration rate were observed in case of IRDP. This study clearly revealed that in case of below soil mass plot, the minimum value of runoff was observed in case of URDP and maximum was for ARDP at 4% land slope while at 8% land slope the minimum value of runoff was observed in case of IRDP and maximum was for URDP. Similarly, the minimum average sediment concentration in this case was observed as 1236.66 PPM in case of DRDP and the maximum value of sediment concentration was observed as 1483.33 PPM in case of URDP at 4% land slope. At 8% land slope, the minimum and maximum values of runoff were observed in case of IRDP & URDP rainfall pattern while the minimum and maximum values of sediment concentration were observed in case of DRDP and ARDP rainfall pattern respectively. The observations and analysis of the findings clearly indicated that in case of runoff, plot with below soil bio mass provided better reduction as compared to above soil bio mass plot for every rainfall distribution pattern. In case of sediment, however, the situation was not that clear as in case of IRDP and DRDP below soil bio mass plot provided better reduction in sediment concentration but n case of IRDP and ARDP, above soil bio mass plots had an edge over below soil bio mass plot in sediment outflow control. Observed values of total runoff indicated that the highest runoff rate occurred in case of land without any treatment under URDP while the lowest runoff rate occurred in case of lands treated with across the slope. It was also observed that the runoff rate got reduced by more than 50 in case of lands treated with across the slope as compared to lands without any treatment under every rainfall distribution pattern. It was also seen that the across the slope furrow treatment produced lesser runoff rate by 25.925%, 20.833%, 18.309% and 17.46% as compared to along the slope furrow treatment at 4% land slope under URDP, ARDP, DRDP and IRDP respectively.
  • ThesisItemOpen Access
    Comparative assessment of different geostatistical approaches for spatial interpolation of annual rainfall
    (G.B. Pant University of Agriculture and Technology, Pantnagar - 263145 (Uttarakhand), 2021-02) Verma, Shikha; Singh, Praveen Vikram
    Rainfall is an essential component and acts as primary input for hydrological modelling. The availability of reliable data is necessarily important to obtain the maximum benefit from hydrological analysis. The rainfall in rajasthan is so irregular and unpredictable spatially as well as temporally. The measurement of rainfall is very important however it is not practically possible to measure at each and every point. In such situations, rainfall measurements are typically available at a finite number of rain gauges therefore, determination of rainfall at various ungauged stations needs spatial interpolation to assess the spatial variability of the region. The analysis was done over annual rainfall of rajasthan having 253 raingauging stations for a period of 40 years (1980–2019). The present study was an attempt to analyze and compare the performance of different geostatistical spatial interpolation techniques, univariate, Ordinary Kriging (OK), and multivariate, Simple Co-kriging (SCK) and Ordinary Co-kriging (OCK), to interpolate the annual rainfall. In both the techniques, spherical, circular and Gaussian models were used to find the best-fitted semivariogram for rainfall prediction purpose. The nugget-sill ratio was determined for all the nine models to decide the best fit model. The statistical analysis of nugget-sill ratio for univariate and multivariate geostatistical analysis revealed that the ordinary kriging (OK-Circular) and ordinary cokriging (OCK-Spherical) was followed the least standard deviation as 0.1121 and 0.1051, respectively in the dataset. The cross-validation results were depicted the overall comparative evaluation of the selected models in which OCK-Spherical outperformed over OK-Circular by the consideration of different statistical parameters. For OK-Circular, the value of ME, RMSE, MSDE, RMSSDE and ASE were found to be 0.6525, 210.1545, 0.0035, 1.0306 and 204.4955 and for the validation of ordinary co-kriging OCK-Spherical these statistical parameter values were found as 0.3221, 210.3274, 0.0023, 1.0367 and 203.6121, respectively. Finally, the study concluded that the incorporation of elevation as a secondary variable with rainfall, increases the accuracy of estimation of spatial continuity of rainfall at ungauged locations irrespective of its correlation with the rainfall. However, both the selected models performed well for the study area. Statistically, OCK-Spherical worked better than OK-Circular method of interpolation.