Loading...
Thumbnail Image

Theses

Browse

Search Results

Now showing 1 - 2 of 2
  • ThesisItemOpen Access
    STUDIES ON GENE ACTION FOR SEED YIELD AND ITS RELATED TRAITS IN URDBEAN [Vigna mungo (L.) Hepper]
    (CSKHPKV, Palampur, 2018-09-18) Patial, Ranjana; Mittal, R.K.
    The present investigation entitled “Studies on gene action for seed yield and its related traits in urdbean [Vigna mungo (L.) Hepper]” was carried out at the Experimental Farm of the Department of Crop Improvement, CSK HPKV, Palampur to gather information on genetic architecture for seed yield and component traits in urdbean. The experimental material comprised of 81 triple test cross progenies developed by mating 27 lines with three testers viz., HPBU-111 (L1), Him Mash-1(L2) and F1 of HPBU-111and Him Mash-1 (L3). These F1’s along with their parents were raised in randomized block design with three replications during Kharif 2017. Data were recorded and analysed for 12 agro-morphological traits. Sufficient variability was observed in the TTC progenies for all the traits studied. Epistasis was found to be an integral part of genetic variation for all of the traits under study. ‘i’ type epistatic interaction estimates were significant for days to 50% flowering, days to 75% maturity, branches per plant, pods per plant, seed yield per plant, biological yield per plant, harvest index and 100 seed weight. Whereas, ‘j+l’ type interaction was significant for all the traits. Both additive and dominant components were significant for all the traits; where additive and dominance components were of almost equal magnitude for pod length, seeds per pod and 100 seed weight indicating the importance of both additive and dominance type of gene action and additive component being more pronounced for rest of the traits indicating the relative importance of fixable type of gene action in their inheritance. Combining ability estimates showed significant genetic variance in lines for all traits whereas testers had significant genetic variance for nine traits. Lines IC-436910, IC-413306, IC-IC-398973 and IC-343885 were found to be good general combiners for most of the traits. Crosses IC-343885 x HPBU-111 (G x G), IC-436910 x HPBU-111 (G x G), IC-413306 x Him Mash-1 (G x P) and IC-343943 x HPBU-111(P x G) were potential crosses on the basis of SCA estimates, mid parent heterosis, better parent heterosis and standard heterosis for seed yield and most of the traits. With regards to the Comparison of ТГС and L x T, the former is advantageous in providing an unambiguous test for the presence of epistasis, while the latter provides additional information, particularly with regard to the gca and sca effects and variances, helping breeders in the choice of better parents. Hence, both these designs should be applied together in order to have concrete information about the genetic architecture of economic traits in any crop.
  • ThesisItemOpen Access
    STUDIES ON GENE ACTION FOR SEED YIELD AND ITS RELATED TRAITS IN URDBEAN [Vigna mungo (L.) Hepper]
    (CSKHPKV, Palampur, 2018-09-18) Patial, Ranjana; Mittal, R.K.
    The present investigation entitled “Studies on gene action for seed yield and its related traits in urdbean [Vigna mungo (L.) Hepper]” was carried out at the Experimental Farm of the Department of Crop Improvement, CSK HPKV, Palampur to gather information on genetic architecture for seed yield and component traits in urdbean. The experimental material comprised of 81 triple test cross progenies developed by mating 27 lines with three testers viz., HPBU-111 (L1), Him Mash-1(L2) and F1 of HPBU-111and Him Mash-1 (L3). These F1’s along with their parents were raised in randomized block design with three replications during Kharif 2017. Data were recorded and analysed for 12 agro-morphological traits. Sufficient variability was observed in the TTC progenies for all the traits studied. Epistasis was found to be an integral part of genetic variation for all of the traits under study. ‘i’ type epistatic interaction estimates were significant for days to 50% flowering, days to 75% maturity, branches per plant, pods per plant, seed yield per plant, biological yield per plant, harvest index and 100 seed weight. Whereas, ‘j+l’ type interaction was significant for all the traits. Both additive and dominant components were significant for all the traits; where additive and dominance components were of almost equal magnitude for pod length, seeds per pod and 100 seed weight indicating the importance of both additive and dominance type of gene action and additive component being more pronounced for rest of the traits indicating the relative importance of fixable type of gene action in their inheritance. Combining ability estimates showed significant genetic variance in lines for all traits whereas testers had significant genetic variance for nine traits. Lines IC-436910, IC-413306, IC-IC-398973 and IC-343885 were found to be good general combiners for most of the traits. Crosses IC-343885 x HPBU-111 (G x G), IC-436910 x HPBU-111 (G x G), IC-413306 x Him Mash-1 (G x P) and IC-343943 x HPBU-111(P x G) were potential crosses on the basis of SCA estimates, mid parent heterosis, better parent heterosis and standard heterosis for seed yield and most of the traits. With regards to the Comparison of ТГС and L x T, the former is advantageous in providing an unambiguous test for the presence of epistasis, while the latter provides additional information, particularly with regard to the gca and sca effects and variances, helping breeders in the choice of better parents. Hence, both these designs should be applied together in order to have concrete information about the genetic architecture of economic traits in any crop.