Integrated management of rhizoctonia leaf blight of amaranthus (Amaranthus tricolor L.)

dc.contributor.advisorRadhakrishnan, N V
dc.contributor.authorGireesh
dc.contributor.authorKAU
dc.date.accessioned2020-12-11T06:10:19Z
dc.date.available2020-12-11T06:10:19Z
dc.date.issued2016
dc.descriptionMScen_US
dc.description.abstractThe study entitled “Integrated management of Rhizoctonia leaf blight of Amaranthus (Amaranthus tricolor L.)” was conducted at the College of Agriculture, Vellayani and Coconut Research Station, Balaramapuram during 2014-2016 with the objective to investigate the effect of soil solarization, biocontrol agents, chemical activator, indigenous formulations and new generation fungicides on growth, yield and severity of foliar blight of amaranthus. Samples of the infected leaves showing Rhizoctonia leaf blight in amaranthus were collected from Vellayani, Kalliyoor, Venganoor and Kakkamoola locations. Among the four isolates of the pathogen, the Vellayani isolate gave significantly superior growth rate with minimum of six days for sclerotial formation. Koch‟s postulates were proved for the pathogenicity of different isolates of Rhizoctonia solani. All the four isolates have taken three days for the first symptom development but the progression of lesion size of Vellayani isolate was maximum compared to all other isolates, hence the Vellayani isolate was selected as the most virulent isolate for use in further in vitro studies. Evaluation of biocontrol agents for in vitro suppression of R. solani showed that Trichoderma harzianum completely overgrown the pathogen with maximum inhibition of 49.56 % compared to Pseudomonas fluorescens (28.30 %). Under in vitro evaluation of chemical activator, different concentrations of Acibenzolar-S- Methyl (ASM) against pathogen, 100 ppm concentration recorded the maximum mycelial inhibition of 75.67 % and 5 ppm concentration recorded the minimum mycelial inhibition of 27.70 %. Among indigenous organic formulations, turmeric powder and baking soda combination inhibited the maximum growth of the pathogen by 64.40 %. In the in vitro studies with new generation fungicides,mancozeb in cow dung supernatant (0.4 %) and tebuconazole (0.1 %) recorded the 100 % mycelial inhibition of the pathogen. Field studies on disease suppression and plant growth promotion was carried out as two experiments, one in soil solarized plots and the other in non solarized plots. Soil solarization along with soil application of ASM (75 ppm) and foliar application of ASM (100 ppm) recorded the lowest disease incidence of 30.41 % and 30.42 % respectively, which was superior when compared with foliar application of ASM (100 ppm) and soil application of ASM (75 ppm) with the disease incidence of 37.06 % and 38.84 %. Soil solarization + foliar spray of tebuconazole (0.1 %) recorded the minimum disease index of 37.85 % which was superior compared to foliar spray of tebuconazole (0.1 %) with the disease index of 39.28 %. Among the biocontrol agents soil solarization + foliar spray of Pseudomonas fluorescens (2 %) gave minimum disease index of 45.22 % which was greater compared to foliar spray of P. fluorescens (2 %) with the disease index of 51.66 %. In case of indigenous organic formulations, soil solarization + foliar spray of fish amino acid (5 %) given the maximum control of the disease with the disease index of 49.51 % which was superior to foliar spray of fish amino acid (5 %) with disease index of 63.59 %. The number of days taken for flowering in soil solarized plots ranged from 28.67 to 35 days where as the number of days taken for the flowering of amaranthus in non solarized plots was ranged from 27.27 to 31.67 days. At the time of harvest, soil solarization + mancozeb in cow dung supernatant (0.4 %) recorded maximum plant height of 127.07 cm which was higher compared to foliar spray of azoxystrobin (0.15 %) with plant height of 117.60 cm. Maximum of 78.00 number of leaves were recorded by soil solarization + foliar spray of azoxystrobin (0.15 %) which was greater compared to foliar spray of azoxystrobin (0.15 %) with 67.67 number of leaves.Soil solarization + foliar spray of azoxystrobin (0.15 %) gave the highest yield in terms of fresh weight by 26975.00 kg/ha and dry weight of 4233.33 kg/ha which was superior when compared with foliar spray of tebuconazole (0.1 %) with the fresh weight of 23375.00 kg/ha and dry weight of 3362.50 kg/ha. It is concluded that soil solarization for 31 days with the foliar application of tebuconazole (0.1%) can effectively control the Rhizoctonia leaf blight disease severity with plant growth and yield promotion under field conditions.en_US
dc.identifier.citation173779en_US
dc.identifier.urihttps://krishikosh.egranth.ac.in/handle/1/5810156532
dc.keywordsPlant Pathologyen_US
dc.language.isoEnglishen_US
dc.pages83p.en_US
dc.publisherDepartment of Plant Pathology, College of Agriculture, Vellayanien_US
dc.subPlant Pathologyen_US
dc.themeManagement of rhizoctonia leaf blight of amaranthusen_US
dc.these.typeM.Scen_US
dc.titleIntegrated management of rhizoctonia leaf blight of amaranthus (Amaranthus tricolor L.)en_US
dc.typeThesisen_US
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
173779.pdf
Size:
4.49 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections