Evaluation of the active principles of the rhizome extracts of L. for the management of melon fly

Loading...
Thumbnail Image
Date
1996
Journal Title
Journal ISSN
Volume Title
Publisher
Department of Agricultural Entomology, College of Horticulture, Vellanikkara
Abstract
The melon fruit fly Bactrocera cucurbitae : Diptera) is one of the highly destructive pest species attacking cucurbits. The larvae hatching from eggs deposited within the fruits, tunnel and feed on the internal contents. As a result of this, the fruits are severely damaged, rot and fall to the ground, where pupation takes place. As the recommended management practices against the melon fly are still proving inadequate, there is a need to devise newer and safer means to solve this problem. The latest trend in pest control is the use of natural products derived from plant and animal sources. Among the various plants tested, Acorus calamus L., is gaining importance owing to its insecticidal and insectistatic properties. The present study was carried out at the Department of Agricultural Entomology, College of Horticulture, Vellanikkara, during 1993-94, with the objective of evaluating the extracts of A. calamus for the management of the melon fly, B. cucurbitae. The experiments were conducted in order to assess effects like repellency, feeding deterrency, oviposition deterrency, ovicidal action, topical contact toxicity to larvae, pupae and adults and chemosterilant action. Water and organic solvents were used to prepare the A. calamus extracts. Among the organic solvents tested, methanol was selected, owing it’s the better effect. Melon flies (B. cucurbitae ) reared in the laboratory were used for all the tests, and the following results were obtained. The repellent and feeding deterrent effects of the extracts was proved by reduced alightment of flies on the treated substrates. The aqueous extracts were effective at 5%, while the methanol extract at 0.1% was highly repellent., proving the superiority of the methanol extract. In the oviposition deterrency test, the number of ovipunctures as well as the fecundity realization, showed a decreasing trend with the increase in concentration of the extracts. The methanol extract was found to be superior to the aqueous extract in deterring oviposition also, as it was effective at 0.25 %, while in case of the aqueous extract a significant effect was produced only at a concentration of 5 %. Toxicity tests were conducted on all life stages of the melon fly. The eggs were not affected by the aqueous extract upto 10%, but there was 100% egg mortality (inhibition of hatching) when 0.1% methanol extract was used. The LC50 of methanol extracts to the eggs was found to be 0.03%. Both the aqueous extract and the methanol extract were found to be ineffective in causing mortality to larvae and pupae, upto 10%. In the case of adult flies, there was no mortality upto 10% of the aqueous extract by topical application or residue film technique. Topical application with methanol extract could not be followed, as the solvent itself caused 100% mortality. However by residual film application, it was possible to obtain a range of mortalities, and the LC50 of methanol extract to adult flies was found to be 0.07%. The methanol extracts were found to inhibit mating completely, in adult flies fed with the extracts at 0.1 to 0.01 % from the day of emergence. The average survival period of these flies was also significantly lower, because of which, fecundity realization was not see. The sizes of reproductive organs in the treated flies were found to be considerably reduced, probably due to regression or oosorption in the ovaries, or general atrophy of the organs, caused by the feeding of the extracts. This damage to the reproductive organs might have caused a hormonal imbalance, which resulted in the mating being inhibited
Description
MSc
Keywords
Citation
170894
Collections