Loading...
Thumbnail Image

Kerala Agricultural University, Thrissur

The history of agricultural education in Kerala can be traced back to the year 1896 when a scheme was evolved in the erstwhile Travancore State to train a few young men in scientific agriculture at the Demonstration Farm, Karamana, Thiruvananthapuram, presently, the Cropping Systems Research Centre under Kerala Agricultural University. Agriculture was introduced as an optional subject in the middle school classes in the State in 1922 when an Agricultural Middle School was started at Aluva, Ernakulam District. The popularity and usefulness of this school led to the starting of similar institutions at Kottarakkara and Konni in 1928 and 1931 respectively. Agriculture was later introduced as an optional subject for Intermediate Course in 1953. In 1955, the erstwhile Government of Travancore-Cochin started the Agricultural College and Research Institute at Vellayani, Thiruvananthapuram and the College of Veterinary and Animal Sciences at Mannuthy, Thrissur for imparting higher education in agricultural and veterinary sciences, respectively. These institutions were brought under the direct administrative control of the Department of Agriculture and the Department of Animal Husbandry, respectively. With the formation of Kerala State in 1956, these two colleges were affiliated to the University of Kerala. The post-graduate programmes leading to M.Sc. (Ag), M.V.Sc. and Ph.D. degrees were started in 1961, 1962 and 1965 respectively. On the recommendation of the Second National Education Commission (1964-66) headed by Dr. D.S. Kothari, the then Chairman of the University Grants Commission, one Agricultural University in each State was established. The State Agricultural Universities (SAUs) were established in India as an integral part of the National Agricultural Research System to give the much needed impetus to Agriculture Education and Research in the Country. As a result the Kerala Agricultural University (KAU) was established on 24th February 1971 by virtue of the Act 33 of 1971 and started functioning on 1st February 1972. The Kerala Agricultural University is the 15th in the series of the SAUs. In accordance with the provisions of KAU Act of 1971, the Agricultural College and Research Institute at Vellayani, and the College of Veterinary and Animal Sciences, Mannuthy, were brought under the Kerala Agricultural University. In addition, twenty one agricultural and animal husbandry research stations were also transferred to the KAU for taking up research and extension programmes on various crops, animals, birds, etc. During 2011, Kerala Agricultural University was trifurcated into Kerala Veterinary and Animal Sciences University (KVASU), Kerala University of Fisheries and Ocean Studies (KUFOS) and Kerala Agricultural University (KAU). Now the University has seven colleges (four Agriculture, one Agricultural Engineering, one Forestry, one Co-operation Banking & Management), six RARSs, seven KVKs, 15 Research Stations and 16 Research and Extension Units under the faculties of Agriculture, Agricultural Engineering and Forestry. In addition, one Academy on Climate Change Adaptation and one Institute of Agricultural Technology offering M.Sc. (Integrated) Climate Change Adaptation and Diploma in Agricultural Sciences respectively are also functioning in Kerala Agricultural University.

Browse

Search Results

Now showing 1 - 9 of 827
  • ThesisItemOpen Access
    Cryopreservation of chethikoduveli (Plumbago rosea L.) and assessment of genetic fidelity of regenerated plantlets using molecular markers
    (Department of Plant Biotechnology, College of Agriculture, Vellayani, 2014) Anand, Vishnu Prakash; KAU
    Investigations on “Cryopreservation of Chethikoduveli (Plumbago rosea L.) and assessment of genetic fidelity of regenerated plantlets using molecular markers” were carried out at the Department of Plant Biotechnology, College of Agriculture, Vellayani during 2011-2013. Plumbago rosea var. Agni plants were collected from AMPRS, Odakkali, Ernakulam and maintained at the Department of Plant Biotechnology, College of Agriculture, Vellayani as source of explant during the course of the study. The objectives of the present study was to standardise cryopreservation protocol by encapsulation dehydration technique for long term conservation of P. rosea and genetic fidelity assessment of plantlets recovered and regenerated from cryostorage using molecular markers. The project was carried out in two phases viz., in vitro regeneration and in vitro conservation by cryopreservation of P. rosea. In vitro regeneration protocol was optimised for P. rosea var. Agni. Various steps of in vitro regeneration viz., surface sterilization, axillary shoot proliferation, in vitro rooting and acclimatization and planting out has been standardised. For surface sterilizing, single nodal explants (3-4 cm long) were subjected to fungicide treatment with 0.1 per cent carbendazim 50 per cent W. P. (for 30 min) followed by aseptic sterilisation dip with absolute alcohol. Further, the explants were surface sterilised with 0.2 per cent mercuric chloride (for 5 min) which gave 100 per cent survival without any contamination. Enhanced release of axillary buds from single nodal explants, with maximum shoot proliferation (5.28 shoots/culture) was obtained in the medium, MS + BA 1.5 mg l-1 + IAA 1.0 mg l-1. The best response (10.67 roots/culture) of in vitro rooting of plantlets was obtained in the medium, MS + NAA 1.0 mg l-1. In vitro rooted plants gave a maximum survival rate of 76 per cent and 72 per cent, when planted out in potting media consisting of red soil and coir pith (3:1) and red soil and coir pith (2:1) supplemented with VAM respectively at 25 per cent shade. In cryopreservation studies, preconditioning treatment (sucrose 0.5 M for 7 days) recorded maximum shoot proliferation (2.67 shoots/culture) when nodal segments with single axillary bud were cultured on MS + BA 1.5 mg l-1 + IAA 1.0 mg l-1 medium. Among different encapsulation treatments, maximum shoot proliferation of (2.31 shoots/culture) was obtained in beads formed with sodium alginate 2.5 per cent and calcium chloride 100 mM, when cultured on the medium, MS + BA 1.5 mg l-1 + IAA 1.0 mg l-1. Pre-culture medium supplemented with sucrose 0.5 M for 3days gave maximum shoot proliferation (3.44 shoots/culture) when cultured on the medium, MS + BA 1.5 mg l-1 + IAA 1.0 mg l-1. A desiccation duration of 5 h at 18.13 per cent moisture level was found to be most effective giving 66.67 per cent survival and 62.50 per cent regeneration on thawing and culturing on the recovery medium MS + BA 1.5 mg l-1 + IAA 1.0 mg l-1. The beads when stored in liquid nitrogen for different duration and cultured on recovery medium did not show any significant variation with respect to survival per cent. RAPD markers were tried to study the genetic fidelity of the regenerated plantlets from encapsulated and cryopreserved axillary buds. Six primers were screened and RAPD banding patterns of the cryoregenerated plantlets and control plants were compared. Polymorphism was not found with any of the primers tested. RAPD profiles of cryoregenerated plantlets were identical to those of the control. The in vitro regeneration protocol optimized included surface sterilization of single node cuttings with 0.2 per cent HgCl2 for 5 min, axillary shoot proliferation in MS medium supplemented with BA 1.5 mg l-1 and IAA 1.0 mg l-1, in vitro rooting in MS medium supplemented with NAA 1.0 mg l-1 and planting out in potting medium, red soil and coir pith (3:1). The protocol for encapsulation dehydration technique of cryopreservation was standardised for the axillary buds of P. rosea with preconditioning in semi solid MS medium supplemented with sucrose 0.5 M for 7 days, encapsulation using sodium alginate 2.5 per cent and calcium chloride 100 mM followed by pre-culture in liquid MS supplemented with sucrose 0.5 M for 3 days and 5 h dehydration (MC 18.13 %), rapid freezing in LN for at least 2 h and recovery in the medium MS + BA 1.5 mg l-1 + IAA 1.0 mg l-1. The cryopreservation protocol using encapsulation-dehydration technique standardised could be utilised for long-term conservation of P. rosea.
  • ThesisItemOpen Access
    Management of bitter gourd mosaic by enhancing host resistance
    (Department of Plant Pathology, College of Horticulture, Vellanikkara, 2015) Ashwini, K N; KAU; Vimi, Louis
    Bitter gourd (Momordica charantia L.) is one of the important vegetable crops that occupy a pivotal position among fruit vegetables, particularly in south India. The fruits of this crop which have high commercial value and are being used for culinary preparations and various medicinal preparations. In spite of the economic importance of this vegetable, the research work carried out on protection of crop from viral disease is quite scanty. In many case, cent per cent mosaic incidence was recorded in the crop resulting in substantial economic loss. So the present study was focused on screening of bitter gourd accessions and management of bitter gourd mosaic by enhancing host resistance using defense inducers. The three different viruses causing mosaic in bitter gourd are cucumber mosaic virus (CMV), potyvirus and bitter gourd distortion mosaic virus (BDMV). As these viruses causes mixed infection in field, the separation of individual viruses was carried out using systemic indicator host plants. For separation of CMV and potyvirus, systemic indicator host plants used were cosmos and papaya respectively. BDMV was separated by white fly transmission. The pure cultures of viruses were maintained on the susceptible bitter gourd variety Preethi. The symptoms developed by different viruses were recorded under natural and artificial conditions were recorded CMV produced mosaic specks, yellow-green mosaic patches, leathery leaves and downward rolling of leaf margin. Symptoms of potyvirus infection were vein clearing, puckering, malformed leaf with reduced leaf size and rugosity. BDMV infection produced mosaic, puckering, leaf distortion, hairy growth on leaves and vines with reduction in leaf size and internodal length. For the screening of bitter gourd accessions against CMV and potyvirus, potassium phosphate buffer pH 7.0 was found to be the most suitable buffer. Among 22 accessions screened, three accessions viz., TCR 285, TCR 39 and TCR 53 were highly resistant to CMV; one accession Biliagala was highly resistant to potyvirus and 11 accessions viz.,TCR 285, TCR 39, TCR 493 ,TCR 416, TCR 492, TCR 494,TCR 380, TCR 202 and TCR 149, Green long and Biliagala were highly resistant to BDMV. The field experiment was undertaken with the objective of management of bitter gourd mosaic by using defense inducers. The three different defense inducers viz., salicylic acid 25 ppm, barium chloride 0.1% and Pseudomonas fluorescens 2 % were evaluated on the moderately resistant cultivar white long and susceptible variety Preethi. The mosaic symptom was recorded after 51 days of sowing in salicylic acid treated plants and after 40 days of sowing in control. A time gap of 5-10 days after spray of defense inducer was required for development of resistance in plants. The lowest disease severity was observed in cultivar White long treated with salicylic acid. The highest yield was recorded in Preethi treated with Pseudomonas fluorescens.
  • ThesisItemOpen Access
    Impact of prominent KAU rice varities on the economic status of farmers in Kerala and Karnataka
    (Department of Agricultural Economics, College of Horticulture, Vellanikkara, 2016) Dhruthiraj, B S; KAU; Chitra Parayil
    The present study entitled “Impact of prominent KAU rice varieties on the economic status of farmers in Kerala and Karnataka” was conducted with the objectives of working out the costs and returns of prominent rice varieties, Jyothi and Uma, released from KAU, to find out the relationship between varietal adoption and net farm income, to identify specific reasons for adoption of KAU varieties and to analyze profitability of the KAU varieties in the states of Kerala and Karnataka by comparing with with local non-KAU varieties cultivated by farmers. The survey was conducted by collecting both primary data and secondary data. The area of study were major rice growing districts of Kerala (Palakkad and Alappuzha) and Karnataka (Mysore and Mandya). These districts were selected on the basis of prominence in adoption of rice varieties released from KAU. The primary data were collected by means of pre-tested interview schedule. The farmers in the study area were categorized into two groups on the basis of variety grown as: KAU variety adopting farmers and local popular non KAU variety adopting farmers. Forty farmers each cultivating at least one acre and adopting KAU variety and 40 farmers cultivating a local popular non-KAU variety were randomly selected and surveyed in each state making a total sample size of 160. The cost-return structure was worked out both for KAU and non KAU variety production using cost concepts. The average cost of cultivation (Cost C2) of KAU varieties was found to be lesser in Palakkad (Rs.73,213 per hectare) compared to Karnataka (Rs.75,731 per hectare ) and Alappuzha (Rs. 81,915 per hectare) and in case of local non KAU varieties, the average cost of cultivation was Rs.83,981 per hectare, Rs.83,634 per hectare and Rs.94,526 per hectare in Karnataka, Palakkad and Alappuzha respectively. The net income obtained by cultivating KAU varieties was found to be higher in Palakkad (Rs.48, 143 per hectare), followed by Alappuzha (26,356 per hectare) and Karnataka (Rs.11, 746 per hectare. The benefit – cost ratio (BCR) at the C2 and explicit cost level was found to be positive for KAU varieties in both the states. This implies that cultivation of KAU varieties was profitable for farmers in both the states. Garrett ranking technique was used to determine the reasons for adoption of KAU varieties. The possible reasons for adoption of KAU varieties in Karnataka were identified as high market price, high yield potential, high tillering capacity and resistance to pests and diseases while in Kerala, Farmers highlighted high yield potential, high market price, high tillering capacity, suitability, to the location, consumption purpose, resistance to pests and diseases and short duration of the variety as major reasons for adoption. Probit model was used to find out the factors affecting adoption of KAU rice varieties. In Kerala, Organizational membership and gross income of the farmers while in Karnataka, education, organizational membership, area and gross income of the farmers were identified as the major factors affecting the adoption of KAU varieties. The average cost of cultivation (cost C2) for seed production of KAU varieties was found to be higher in Karnataka (Rs. 88,176 per hectare), compared to Kerala (Rs.86, 355 per hectare). The average gross income was found to be higher in Kerala (Rs.1, 56,223 per hectare) compared to Karnataka (Rs.1, 17,513 per hectare). The net income at cost C2 was found to be positive for both the states whereas the amount was found to be higher in Kerala was compared to Karnataka. The marketing channels identified Kerala were Channel 1: Farmer- Supplyco - Rice millers - Public distribution system (PDS) – Consumers, Channel 2: Farmer - Rice millers – Retailers- Consumers and Channel 3: Farmer- Middlemen- Rice milers - Retailers - Consumers. The marketing channels identified in Karnataka were Channel 1: Farmer – Rice milers- Kerala marketing channels identified in Karnataka were Channel 1: Farmer - Rice millers- Kerala rice market - Wholesaler/Local trader - Retailer -Consumer, Channel 2: Farmer - Local trader – Kerala rice market- Rice millers -Retailer - Consumer, Channel 3: Farmer - Kerala rice market - Wholesaler/Rice millers/Local agents – Retailers - Consumers, Channel 4: Farmer - APMC -middlemen -Kerala rice market - Wholesaler/Rice millers/Local agents - Retailers - Consumer. For both KAU and non KAU rice varieties, labour cost accounted for highest share in the cost A1 components in both the states; therefore, efforts have to be made for mechanizing paddy cultivation. Also initiatives have to be taken to attract the younger generation towards agriculture and more importantly paddy cultivation.
  • ThesisItemOpen Access
    Pathogenicity of indigenous entomopathogenic fungi against select lepidopteran pests
    (Department of Agricultural Entomology, College of Agriculture, Vellayani, 2016) Praveena, A; KAU; Sudharma, K
    The present study entitled “Pathogenicity of indigenous entomopathogenic fungi against select lepidopteran pests” was carried out in the Department of Agricultural Entomology, College of Agriculture, Vellayani during 2014-2016 with the objective to identify indigenous entomopathogenic fungi and evaluate their pathogenicity to lepidopteran pests of banana and vegetables. Survey was conducted in five agroecological zones of Thiruvananthapuram district at bimonthly intervals during 2015-16, for the isolation of fungi. Fungi from mycosed cadavers and 900 soil samples, collected from cultivated and uncultivated fields were isolated. Of the ten isolates of fungi selected from the 115 fungal isolates obtained, three were from mycosed cadavers which consisted of two isolates of Beauveria bassiana (Balsamo) Vuillemin (SP2 and SP4) and one isolate of Fusarium oxysporum Schlecht (SP1). Of the seven isolates from soil, one isolate was Fusarium solani (Mart.) Sacc. (SP6), five were isolates of Metarhizium anisopliae Metschnikoff (Sorokin) and one isolate was Purpureocillium lilacinum Thorn (Samson). Four isolates of M. anisopliae were trapped using larvae of Galleria melonella L. and one was trapped using grubs of Odoiporous longicollis Olivier. The isolate, S10 was obtained through soil plate method, with selective media. Symptoms of fungal infection varied, which was mainly reflected in the mycelial colour and growth of the isolates. Morphological and cultural characteristics also varied among the fungal isolates. Further, molecular characterization of the fungi was done through ITS sequencing. GenBank accession numbers for all the ten isolates were obtained on submission of nucleotide sequence in National Center for Biotechnology Information (NCBI). Among the various indigenous isolates, highest spore count was recorded in the M. anisopliae isolate, SP11 (28.01 x 107 spores mL-1) at 14 days after inoculation. The pathogenicity of the ten indigenous isolates and two isolates from National Bureau of Agricultural Insect Resources (NBAIR) were evaluated against five lepidopteran insects infesting banana and vegetables at different concentrations. The isolate M. anisopliae (SP8) recorded the highest mortality of 83.33 to 100 per cent and 64.44 to 95.83 per cent against the second instar larvae of Diaphania indica Saunders and first instar larvae of Leucinodes orbonalis Guenee at 107 to 109 spores mL-1 at seven days and five days after treatment respectively. The isolates SP11 and Ma4 of M. anisopliae that caused mortality of 83.33 to 100 per cent and 63.33 to 100 per cent were the most effective isolates against second instar larvae of Sylepta derogata Fabricius and Hymenia recurvalis Fabricius respectively. All the isolates except M. anisopliae (SP11) and B. bassiana (Bb5a) were non pathogenic to the larvae of Spodoptera litura Fabricius. The colour of the mycelial growth varied with isolates. A pot culture experiment was conducted in the Instructional Farm, Vellayani during April to June 2016, for the evaluation of seven indigenous isolates and two NBAIR isolates against leaf webbers in amaranthus, variety Arun. The lowest number of plants infested by webbers, webbings plant-1 and larvae web-1 at 14 days after treatment and the highest yield was recorded in the isolate M. anisopliae (SP11) @ 108 spores mL-1 and it was followed by M. anisopliae Ma4 and SP8 . To conclude, ten indigenous isolates of entomopathogenic fungi were collected from mycosed cadavers and soil and were identified as B. bassiana (SP2, SP4), F. oxysporum (SP1), F. solani (SP6), M. anisopliae (SP7, SP8, SP9, SP11 and SP13) and P. lilacinum (S10) through morphological, cultural characters and molecular characterization. Pathogenicity test to five lepidopteran pests showed that M. anisopliae (SP7, SP8, SP9, SP11, SP13) and NBAIR isolates of B. bassiana (Bb5a) and M. anisopliae (Ma4) were pathogenic to D. indica, H. recurvalis, L. orbonalis and S. derogata. Results of pot culture experiment showed that the indigenous isolates M. anisopliae (SP11) and (SP8) and NBAIR isolate M. anisopliae (Ma4) can be exploited for the management of leaf webbers in amaranthus.
  • ThesisItemOpen Access
    Customized fertilizer and nutrient scheduling for okra (abelmoschus esculentus (L.) moench)
    (Department of Agronomy, College of Horticulture, Vellanikkara, 2016) Yansin, Luikham; KAU; Anitha, S
    Multinutrient deficiencies in soil are common nowadays due to imbalanced use and extensive mining of nutrients, which have also led to the decline of soil and crop productivity over time. Customized fertilizers (CF), which are multinutrient carriers facilitating the supply of complete range of nutrients in right proportion for the crop grown in a particular soil, have come up as an alternative to tide over these problems. Scheduling of nutrients by split application promotes efficient utilization of nutrients in a need based manner and helps to reduce nutrient losses from the soil. An investigation entitled “customized fertilizer and nutrient scheduling for okra (Abelmoschus esculentus (L.) Moench)” was carried out at the Water Management Research Unit, Vellanikkara, Thrissur from May to September, 2015 with the objective of developing a customized fertilizer and studying its techno- economic feasibility and nutrient scheduling in okra. The investigation consisted of 12 treatments viz., FYM + 75% CF (2 splits at 30 days interval), FYM + 75% CF (4 splits at 15 days interval), FYM + 100% CF (2 splits at 30 days interval), FYM + 100% CF (4 splits at 15 days interval), FYM + 125% CF (2 splits at 30 days interval), FYM + 125% CF (4 splits at 15 days interval), FYM + soil test based NPK application (N & K as 2 splits at 30 days interval), FYM + soil test based NPK application (N & K as 4 splits at 15 days interval), FYM + NPK as per POP (N & K as 2 splits at 30 days interval), FYM + NPK as per POP (N & K as 4 splits at 15 days interval), FYM alone based on N recommendation of POP (2 splits at 30 days interval) and absolute control. Biometric observations were recorded and nutrient contents and uptake were estimated at 30 DAS, 60 DAS and 90 DAS. A customized fertilizer grade was developed based on the initial analysis of macro and micronutrient contents of soil and nutrient requirement of okra. Water soluble fertilizers and straight fertilizers were used for the preparation of CF. Based on the soil fertility rating and nutrient recommendation for okra, the actual nutrients needed for the experimental site was worked out in kg ha-1 as 59N: 9P: 34K: 16Mg: 1B. Based on this, CF grade 22.01N: 3.35 P: 12.68K: 5.97Mg: 0.37B was developed. The study revealed that application of 125 per cent CF either as two or four splits was equally effective and recorded the highest yield compared to lower doses of CF and other nutrient management practices. Application of 125 per cent CF resulted in a yield increase of 32.11 per cent, 35.16 per cent and 49.84 per cent compared to soil test based application, application of nutrients at recommended dose and application of FYM alone respectively. Application of 100 per cent CF recorded higher yield compared to nutrient application based on soil test based NPK and NPK as per POP. The yield increase in 125 per cent CF was due to the better development of growth and yield parameters and higher nutrient uptake including that of Mg and B in customized fertilizer doses. The lower doses of CF (75%) performed equally well as soil test based NPK and NPK as per POP with respect to yield. The combined application of fertilizers along with FYM gave better yield than application of FYM alone as a source of nutrients. Faster delivery of nutrients could be achieved through fertilizers since FYM alone could not meet the huge requirement of nutrients by okra. In this study, application of CF and other fertilizers in more splits did not show significant increase in yield of okra. Application of CF showed a positive effect on the soil fertility status except for nitrogen. The improvement in nutrient status could be attributed to application of optimum dose of CF along with FYM to maintain adequate supply of nutrients. The application of higher levels of CF was cost effective and economically beneficial due to higher yield despite increased cost of cultivation owing to higher cost of inputs. Nutrient application in lower splits was more economical due to reduced labour. The study indicated that application of multinutrient carriers such as customized fertilizers are a technologically and economically viable practice for increasing soil and crop productivity. The quantities of NPK required as CF are much lower than the POP recommendations, and therefore fertilizer doses can be reduced substantially.
  • ThesisItemOpen Access
    Provenance evaluation of acacia mangium wild for growth and wood traits
    (Department of Tree Physiology and Breeding, College of Forestry,Vellanikkara, 2015) Ringyao, Jajo; KAU; Santhoshkumar, A V
    A provenance evaluation of A. mangium was conducted in 14 year old plantation at Livestock Research Station, Thiruvazhamkunnu, to understand the variation in growth and wood traits among the provenances. Ten provenances and one local seed source was used for the trial. The provenances had high survival percentage (77.44%), but did not differ significantly between provenances. Significant differences between provenances were found in tree height, while they were on par for DBH, volume, tree form and branching habit. The provenances of Kuranda, Arufi Village, Upper Aramia, Oriomo, Balimo and Binaturi were taller than the rest. Heritability of growth attributes was highest for height (63%). Morphometric traits of seeds were found to be significantly different between the provenances. Arufi Village provenance was found to be better than the other provenances for the traits. Seed weight and seed width were found to be strongly correlated with seedling height. Variation in germination energy, germination value and germination period were also significantly different between provenances. Lake Murray provenances showed the best performance in most of the parameters studied for germination. No significant differences between provenances were observed for germination capacity. Germination parameters are under moderate to high genetic control. Significant differences were noticed among the progenies of the provenances in height, while they did not differ in terms of collar girth and RGR. The provenances differed significantly in physical properties of wood, but not in mechanical properties. The provenances differed significantly for heartwood only at the base, while basic density was significantly different at all the height levels. Density was significantly and positively correlated with fiber length and slenderness, but negatively with fiber diameter and fiber wall thickness. The variations in fiber morphology between the provenances were also found to be significant. However, runkel ratio, flexibility and rigidity coefficient did not differ significantly between the provenances. Wood properties of the provenances were under strong genetic control. Based on the study, Tully-Mission Beach, Arufi Village, Kuranda, Upper Aramia, Lake Murray and Binaturi provenances can be recommended for growing under Kerala condition.
  • ThesisItemOpen Access
    Gene pyramiding for bacterial blight resistance in rice variety Uma (Mo 16)
    (Department of Plant Breeding and Genetics, College of Horticulture, Vellanikkara, 2016) Tintumol, Joseph; KAU; Rose Mary, Francies
    Exploiting host-plant resistance through pyramiding of resistance genes have been recommended as the best approach to impart durable resistance to rice varieties in order to combat the bacterial blight (BB) disease caused by Xanthomonas oryzae pv.oryzae (Xoo). In lieu of this, F1s were produced by hybridizing the susceptible elite rice variety Uma with resistant donor parent Improved Samba Mahsuri (ISM) harbouring three R-genes xa5, xa13 and Xa21. BC1F1 individuals were generated by backcrossing the F1s using variety Uma as the recurrent parent. The present study aimed to identify the R-genes introgressed individuals in the BC1F1 population as well as to produce BC2F1s and BC1F2s of the identified R-genes introgressed BC1F1s. Foreground selection of the BC1F1 individuals was done using the R gene linked molecular markers. Restriction digestion of the PCR product of STS marker RG 556, linked to R gene xa5, with Dra1 restriction enzyme, resulted in production of alleles of size 128 bp, 514 bp, 587 bp, 624 bp, 650 bp and 836 bp in all the BC1F1 individuals as well as the parents indicating the presence of R gene xa5 in all the individuals studied. Amplification of DNA of the individuals with the functional marker xa5 SR further confirmed the presence of R gene xa5 in both the parents as well as in all the BC1F1s. Restriction digestion of the PCR product of STS marker RG 136, linked to R gene xa13, with Hinf1, produced alleles similar to that of the donor parent ISM in three BC1F1s namely, plant no. 8.3.2, plant no. 8.3.3 and plant no. 8.3.9, indicating the presence of R gene xa13 in these plants. The presence of gene xa13 in the identified BC1F1s was further affirmed by using the functional marker xa13 promoter. The analysis had resulted in the production of 560bp allele associated with the resistant allele of gene xa13 in homozygous state from donor parent ISM in the three BC1F1s mentioned above. Out of the 95 BC1F1 individuals scored with the STS marker pTA 248 linked to R gene Xa21, only BC1F1s plant no. 8.3.2, plant no. 8.3.3 and plant no. 8.3.9 were found to possess Xa 21. Results thus obtained revealed thatBC1F1plant no. 8.3.2, plant no. 8.3.3 and plant no. 8.3.9 were R gene pyramids (xa 5+xa 13+ Xa 21). Background profiling of the three R-genes introgressed BC1F1s using 22 rice microsatellite markers, revealed presence of the donor parent allele in the homozygous state. PCR analysis with the marker RM 307, however, revealed the presence of alleles from both the parents, ISM and Uma in the BC1F1 plant no. 8.3.2. This indicated that the plant was heterozygous at the marker locus and can be expected to segregate for the alleles at this locus in subsequent generations. Considering the segregation of the 22 markers the per cent recurrent parent genome recovery in the R-genes introgressed BC1F1s was estimated to be higher in BC1F1 plant no.8.3.2 but lower than the expected estimate of 75 per cent. This was also confirmed by graphical genotyping. The dendrogram thus generated out of the marker data, grouped the R-genes introgressed BC1F1s with ISM indicating that the three R-genes introgressed BC1F1s exhibited greater similarity with donor parent parent ISM at the genome level. Evaluation of BC1F1 individuals for morphological traits revealed presence of wide variability. The three R-genes introgressed BC1F1s were late in flowering compared to the recurrent parent Uma. Two of these genotypes i.e.,plant no. 8.3.2 (234 days) and plant no. 8.3.3 (228 days) flowered later than the donor parent. However, the three R-genes introgressed BC1F1s resembled the recurrent parent Uma with respect to grain and kernel characteristics. Backcrossing the three R-genes introgressed BC1F1s i.e., plant no. 8.3.2, plant no. 8.3.3 and plant no. 8.3.9 to the recurrent parent Uma resulted in 28 BC2F1s. Simultaneously, selfing of these individuals produced 850 BC1F2 seeds. Foreground and background profiling of these generations can ensure precise identification of genotypes that resembles the recurrent parent Uma possessing the resistance genes of interest with maximum recovery of recurrent parent genome.
  • ThesisItemOpen Access
    Extraction and utilization of anthocyanin pigments from jamun ( Syzygium cumini L. )
    (Department of Processing Technology, College of Horticulture, Vellanikkara, 2016) Naresh, N; KAU; Sheela, K B
    The project entitled “Extraction and utilization of anthocyanin pigments from jamun (Syzygium cumini Skeels.)” was undertaken at the Department of Processing Technology, College of Horticulture, Vellanikkara during 2013-15. The objectives of the study were standardization of method of extraction of anthocyanin pigment and evaluation of pigment stability to pH, light, temperature, storage conditions and in processed products. Method for extraction of anthocyanin pigments from jamun was standardized. Among the four extraction methods compared, highest content of anthocyanin (61.07mg/100g), recovery per cent (13.75), colour hue (1.30) and colour intensity (1.13) were obtained for acidified solvent extraction method (20% ethanol + 0.5% citric acid). The effect of light and storage conditions on pigment stability was evaluated. Storage in amber coloured bottles under refrigerated conditions was found to be best for anthocyanin pigment due to lesser degradation of the pigment compared to that stored under ambient conditions. The effect of temperature on the anthocyanin content was studied at 70, 80 and 900 C and anthocyanin content was measured at intervals 30 minutes, 45 minutes and one hour of incubation at each temperature. Anthocyanin content decreased from an initial value of 61.25mg/100g to 50.24mg/100g one hour of heating at 900 C. The effect of pH on stability of anthocyanin pigment was studied at different pH ranging from 2.5 to 7 and incubating it for different intervals from one hour to 20 days at room temperature. Anthocyanin content was found to decrease with increase in pH and the least decrease was found at pH 2.5. Anthocyanin content was found to decrease from an initial value of 61.25mg/100g to 34.28mg/100g 20 days after incubation at a pH of 7. Least changes in pH were observed in RTS beverage prepared with 0.3% citric acid and 0.01% ascorbic acid and stored at refrigerated condition (T10). Acidity of the RTS beverage followed an increasing trend during storage, greatest change in acidity was observed in T8 (product coloured with synthetic colour). Ascorbic acid was found to decrease with increase in duration of storage, minimum changes in ascorbic acid was observed in RTS beverage prepared with 0.4% citric acid and 0.02% ascorbic acid and stored at refrigerated condition (T14). RTS beverage stored under refrigerated conditions retained colour throughout the storage period as compared to ambient condition where there was a greater loss of the colour. Addition of ascorbic acid was found to hasten the colour degradation of the beverage under ambient conditions, but under refrigerated conditions there was not much change in colour. Pigment stability in mixed fruit jam was also studied by storing the prepared product under ambient and refrigerated conditions for a period of three months. pH of the mixed fruit jam followed a declining trend during storage, least change in pH was observed in T1 (control under refrigerated condition) during storage. There was no significant change in the colour of the mixed fruit jam stored under refrigerated conditions. A slight darkening of the colour was seen in the bottles stored at ambient condition. Guava RTS beverage and mixed fruit jam was organoleptically evaluated by selected panel of judges. The products kept under refrigerated conditions recorded highest scores for flavour, texture, taste and overall acceptability compared to those kept at ambient conditions three months after storage.
  • ThesisItemOpen Access
    Evaluation of superior cultures for yield and yellow vein Mosaic resistance in okra
    (Department of Plant Breeding and Genetics College of Agriculture, Vellayani, 2016) Nikitha, J; KAU; Arya, K
    The present study entitled “Evaluation of superior cultures for yield and yellow vein mosaic resistance in okra (Abelmoschus esculentus (L.) Moench)” was carried out in the Department of Plant Breeding and Genetics, College of Agriculture, Vellayani during 2014-2016, with the objective to identify high yielding and yellow vein mosaic resistant cultures of okra from those evolved through inter-varietal hybridization programme. Fifteen superior cultures of okra obtained from the previous project in the Department viz., VLYA 1, VLYA 2, VLYA 3, VLYA 4, VLYA 5, VLYA 6, VLYA 7, VLYA 8, VLYA 9, VLYA 10, VLYA 11, VLYA 12, VLYA 13, VLYA 14 and VLYA 15 along with two check varieties Varsha Uphar and Kiran were evaluated in a Randomized Block Design (RBD) with three replications during summer season of 2015. The analysis of variance was calculated for the traits under study viz., days to 50 per cent flowering, number of fruits plant-1, fruit weight (g), fruit length (cm), fruit girth (g), yield plant-1 (g), plant height (cm) and duration (days) and these were found to be highly significant for all the genotypes evaluated. The maximum yield was recorded by the genotype VLYA 2 which was on par with genotypes VLYA 5, VLYA 10, VLYA 11, VLYA 13 and VLYA 15 and the minimum yield was observed by the check variety Kiran. The yield plant-1 exhibited moderate GCV (18.42%) and PCV (19.05%), high heritability (94.00%) coupled with high genetic advance (36.69%). The yield plant-1 was found to be significantly and positively correlated with number of fruits plant-1, fruit length, fruit girth, fruit weight and plant height both at genotypic and phenotypic levels. Days to 50 per cent flowering and yellow vein mosaic disease incidence was found to be negatively correlated with yield plant-1. Very high positive and significant inter-correlation was noticed between height of plant and number of fruits plant-1. The path analysis showed that number of fruits plant-1 and fruit weight showed the maximum positive direct effect towards yield. The number of fruits plant-1 had high indirect effect through fruit length. The scoring for yellow vein mosaic disease and the vulnerability index revealed that the genotypes VLYA 5, VLYA 11 and VLYA 13 were resistant to the disease during all stages of crop growth. Number of white flies was found to be highest in VLYA 10 and lowest in VLYA 2. The incidence of fruit and shoot borer was also scored and five genotypes viz., VLYA 2, VLYA 4, VLYA 11, VLYA 13 and VLYA 14 were found to be immune and VLYA 3, VLYA 5, VLYA 15 and Varsha Uphar were found to be resistant. The glass house experiment of vector transmission and graft transmission was conducted for the confirmation of disease resistance and the vulnerability index was calculated to check the severity of the disease. The genotypes VLYA 5, VLYA 11 and VLYA 13 received a score ‘0’ which indicated that these genotypes were highly resistant. Hence the genotypes which obtained a vulnerability index of ‘0’ during both field evaluation and glass house experiment were confirmed to be resistant to yellow vein mosaic disease. Hence the present study revealed that the cultures VLYA 5, VLYA 11 and VLYA 13 were having high yield and yellow vein mosaic disease resistance. So these genotypes can be used for further trials before releasing for field cultivation.