Loading...
Thumbnail Image

Kerala Agricultural University, Thrissur

The history of agricultural education in Kerala can be traced back to the year 1896 when a scheme was evolved in the erstwhile Travancore State to train a few young men in scientific agriculture at the Demonstration Farm, Karamana, Thiruvananthapuram, presently, the Cropping Systems Research Centre under Kerala Agricultural University. Agriculture was introduced as an optional subject in the middle school classes in the State in 1922 when an Agricultural Middle School was started at Aluva, Ernakulam District. The popularity and usefulness of this school led to the starting of similar institutions at Kottarakkara and Konni in 1928 and 1931 respectively. Agriculture was later introduced as an optional subject for Intermediate Course in 1953. In 1955, the erstwhile Government of Travancore-Cochin started the Agricultural College and Research Institute at Vellayani, Thiruvananthapuram and the College of Veterinary and Animal Sciences at Mannuthy, Thrissur for imparting higher education in agricultural and veterinary sciences, respectively. These institutions were brought under the direct administrative control of the Department of Agriculture and the Department of Animal Husbandry, respectively. With the formation of Kerala State in 1956, these two colleges were affiliated to the University of Kerala. The post-graduate programmes leading to M.Sc. (Ag), M.V.Sc. and Ph.D. degrees were started in 1961, 1962 and 1965 respectively. On the recommendation of the Second National Education Commission (1964-66) headed by Dr. D.S. Kothari, the then Chairman of the University Grants Commission, one Agricultural University in each State was established. The State Agricultural Universities (SAUs) were established in India as an integral part of the National Agricultural Research System to give the much needed impetus to Agriculture Education and Research in the Country. As a result the Kerala Agricultural University (KAU) was established on 24th February 1971 by virtue of the Act 33 of 1971 and started functioning on 1st February 1972. The Kerala Agricultural University is the 15th in the series of the SAUs. In accordance with the provisions of KAU Act of 1971, the Agricultural College and Research Institute at Vellayani, and the College of Veterinary and Animal Sciences, Mannuthy, were brought under the Kerala Agricultural University. In addition, twenty one agricultural and animal husbandry research stations were also transferred to the KAU for taking up research and extension programmes on various crops, animals, birds, etc. During 2011, Kerala Agricultural University was trifurcated into Kerala Veterinary and Animal Sciences University (KVASU), Kerala University of Fisheries and Ocean Studies (KUFOS) and Kerala Agricultural University (KAU). Now the University has seven colleges (four Agriculture, one Agricultural Engineering, one Forestry, one Co-operation Banking & Management), six RARSs, seven KVKs, 15 Research Stations and 16 Research and Extension Units under the faculties of Agriculture, Agricultural Engineering and Forestry. In addition, one Academy on Climate Change Adaptation and one Institute of Agricultural Technology offering M.Sc. (Integrated) Climate Change Adaptation and Diploma in Agricultural Sciences respectively are also functioning in Kerala Agricultural University.

Browse

Search Results

Now showing 1 - 9 of 6206
  • ThesisItemOpen Access
    Management of foot rot of black pepper (Piper nigrum L.) with mycoinoculant enriched vermicompost
    (Department of Plant Pathology, College of Agriculture, Vellayani, 2002) Divya, S; Sasikumar Nair
    The study, "Management of foot rot of black pepper (Piper nigrum L.) with mycoinoculant enriched vermicompost" was done at the Department of Plant Pathology, College of Agriculture, Veliayani to explore the possibility of using vermicornpost as a carrier material for mass production of biocontrol agents and to test its efficacy in controlling the disease. The talc based inoculum of Trichoderma harzianum and soil based granular inoculum of Glomus Jasciculatum were mass produced in vermicompost either alone or in combination with farmyard manure or neem cake in the ratio 1 : 1 and 5 : 1 respectively and the efficacy was compared with the standard carrier material of FYM + neem cake (10 : 1). The population of T. harzianum 15 DAI was maximum in the treatment combination of VC + NC (5 : 1). However, the influence of these carrier materials on percentage of mycorrhizal infection 50 DAI was not statistically significant. Vermicompost as a carrier material for biocontrol agents was further tested in pepper var. Karimunda inoculated with P. capsici. Carrier materials as such had no significant influence on disease control. Reduction in foliar infection, disease index, stem infection and percentage mortality was observed in treatments with biocontrol agents. Disease control was maximum with the treatments involving T. harzianum while plant growth promotion was maximum with G. Jasciculatum. The physiological changes in pepper plants after inoculation with P. capsici and biocontrol agents were studied. The phenol and OD phenol content was more in pathogen inoculated plants. The defence related enzymes peroxidase, polyphenol oxidase and phenylalanine ammonia lyase were enhanced with pathogen inoculation as well as with the application of biocontrol agents. SDS-PAGE analysis of proteins with samples extracted from plants one day after inoculation of pathogen showed the presence of two novel proteins with molecular . weights of 78 kDa and 28 kDa in diseased samples which were absent in treatments without pathogen and also in plants treated with COC.
  • ThesisItemOpen Access
    Genetic studies in red gram (eafanui caiaixL)
    (Department of Agricultural Botany, College of Horticulture, Vellanikkara, 1988) Radhakrishnan, V V; KAU; Narayanan Namboodiri, K N
  • ThesisItemOpen Access
    Studies on induced mutations in rice (Oryza sativa L.)
    (Division of genetics and plant breeding ,Agricultural college and research institute , Coimbatore., 1971) Gopinathan Nair, V; KAU
  • ThesisItemOpen Access
    Effect of planting date, weight of rhizome and spacing on the growth, yield and quality constituents on turmeric (Curcuma longa L)
    (Department of Horticulture (Plantation Crops & Spices), College of Horticulture, Vellanikkara, 1983) Chatterjee, R K; KAU; Mohanakumaran, N
  • ThesisItemOpen Access
    Genetic variability, path analysis and stability parameters in sesame
    (Department of Plant Breeding, College of Agriculture, Vellayani, 1985) Sverup, John; KAU; Gopinathan Nair, V
    Biometric analysis in a varietal collection of sesame was undertaken to study the genetic variability, correlations, path analysis and stability parameters. One hundred sesame types were evaluated in replicated trials at Vellayani in uplands during rabi and at Kayamkulam in rice fallows during summer. Genetic variability and correlations were estimated and path analysis worked out independently as both the locations. Location trials for estimating stability parameters were conducted at three places viz. in uplands during rabi at Pattambi and Vellayani and in rice fallows during summer at Kayamkulam. Large values for genotypic coefficients of variation were obtained for characters such as number of capsules on branches, number of capsules perplant, number of capsules on main stem and number of branches during rabi as well as summer. The lowest genotypic coefficient of variation was obtained for number of days to maturity during both rabi and summer. High values of heritability were recorded by seed protein content , seed oil content, height upto first capsule and weight of 1000 seeds under both conditions.
  • ThesisItemOpen Access
    Studies on the burrowing nematode radopholus similis (cobb,1893) thorne 1949 on pepper(Piper nigrum L.) and its role in slow wilt disease
    (Department of plant pathology, University of agricultural sciences, Bangalore, 1976) Venkitesan, T S; Setty, K G H
  • ThesisItemOpen Access
    Biotic agents for the management of American serpentine leaf miner, Liriomyza trifolii(Burgess) (Diptera:Agromyzidae)
    (Department of agricultural entomology, College of horticulture, Vellanikkara, 2014) Jyothi Sara, Jacob; KAU; Maicykutty P, Mathew
    A study on “Biotic agents for the management of American serpentine leaf miner, Liriomyza trifolii (Burgess) (Diptera: Agromyzidae)” was carried out at the Department of Agricultural Entomology, College of Horticulture, K.A.U., Vellanikkara during 2011-2013 with the objectives of collection and identification of indigenous natural enemies and to assess the pathogenicity of the entomopathogens to explore the feasibility of utilizing them for its management. Surveys were conducted in the vegetable fields for the collection and identification of natural enemies associated with L. trifolii in three districts, namely, Thrissur, Ernakulam and Kottayam from January to March, 2011. The surveys revealed the occurrence of nine species of hymenopteran parasitoids. The per cent parasitism varied from 10.96 to 58.99 per cent among the crops surveyed. Three species of eulophids, namely, Cirrospilus acadius Narendran, C. brevicorpus Shafee & Rizvi and Aprostocetus sp. as well as the braconid, Toxares sp. are new reports for India. Among the parasitoids, Closterocerus spp. were the dominant group followed by Chrysonotomyia sp. All parasitoids were solitary, larval endoparasitoids except Toxares sp. which was larval-pupal in nature. One species each of small ants (Formicidae) and a dipteran fly (Dolichopodidae) were observed as predators on L. trifolii. In the study, no entomopathogens were observed from L. trifolii. Considering the level of pesticide consumption in vegetable crops that undermine the potential of insect parasitoids and also that no entomopathogens could be observed during the survey, it was decided to evaluate entomopathogenic nematodes (EPNs) as biocontrol agents against L. trifolii. Isolation of EPNs from 72 soil samples from Thrissur, Ernakulam and Kottayam districts yielded four isolates of Steinernema carpocapsae. Bioefficacy studies carried out on these four isolates along with Steinernema bicornutum and Heterorhabditis indica showed that S. carpocapsae Isolate - 1 had the lowest LC 50 , LC 90 and LT values indicating their higher effectiveness against the maggots of the pest. 50 Pot culture study conducted to compare the potential of S. carpocapsae Isolate - 1 with other treatments showed that azadirachtin 1 EC at 0.005% was the most effective causing 84.51 per cent mortality to the maggots of L. trifolii. This was followed by the foliar application of H. indica at 32 infective juveniles (IJs)/ maggot which caused 18.98 per cent mortality. Application of Beauveria bassiana at 1×10 7 spores/ ml was not effective. In the field evaluation, fipronil 5 SC at 0.002% was found to be the most effective treatment for controlling L. trifolii followed by azadirachtin 1 EC at 0.005%. Compatibility of the IJs of the S. carpocapsae Isolate - 1, S. bicornutum and H. indica was studied with ten commonly used insecticides in the laboratory by direct exposure method. Chlorantraniliprole 18.5 SC at 0.005% was found to be the most compatible insecticide with S. carpocapsae isolate - 1 causing only 0.17 per cent mortality to IJs at 72 hours after treatment (HAT). Quinalphos 25 EC at 0.05% and chlorpyriphos20 EC at 0.05% were highly incompatible, causing 96.17 and 92.87 per cent mortality of the nematodes. Dimethoate 30 EC at 0.04% was the most compatible insecticide with S. bicornutum and caused only 0.60 per cent mortality at 72 HAT and was followed by azadirachtin 1 EC at 0.005% with 0.78 per cent mortality to the IJs. Quinalphos 25 EC at 0.05% caused 99.93 per cent mortality at 72 HAT. Heterorhabditis indica was compatible with all insecticides except quinalphos 25 EC at 0.05% which was moderately toxic resulting in 39.6 per cent mortality. The virulence, pathogenicity and multiplication of the survived IJs were not affected by the insecticide treatments. Parasitoids and EPNs were observed as potential candidates for the management of L. trifolii. Hence future studies on the bio-ecology and mass production of dominant parasitoids and standardization of methods to improve the efficacy of EPNs are suggested for the successful control of L. trifolii in polyhouses as well as in the field.
  • ThesisItemOpen Access
    Cryopreservation of chethikoduveli (Plumbago rosea L.) and assessment of genetic fidelity of regenerated plantlets using molecular markers
    (Department of Plant Biotechnology, College of Agriculture, Vellayani, 2014) Anand, Vishnu Prakash; KAU
    Investigations on “Cryopreservation of Chethikoduveli (Plumbago rosea L.) and assessment of genetic fidelity of regenerated plantlets using molecular markers” were carried out at the Department of Plant Biotechnology, College of Agriculture, Vellayani during 2011-2013. Plumbago rosea var. Agni plants were collected from AMPRS, Odakkali, Ernakulam and maintained at the Department of Plant Biotechnology, College of Agriculture, Vellayani as source of explant during the course of the study. The objectives of the present study was to standardise cryopreservation protocol by encapsulation dehydration technique for long term conservation of P. rosea and genetic fidelity assessment of plantlets recovered and regenerated from cryostorage using molecular markers. The project was carried out in two phases viz., in vitro regeneration and in vitro conservation by cryopreservation of P. rosea. In vitro regeneration protocol was optimised for P. rosea var. Agni. Various steps of in vitro regeneration viz., surface sterilization, axillary shoot proliferation, in vitro rooting and acclimatization and planting out has been standardised. For surface sterilizing, single nodal explants (3-4 cm long) were subjected to fungicide treatment with 0.1 per cent carbendazim 50 per cent W. P. (for 30 min) followed by aseptic sterilisation dip with absolute alcohol. Further, the explants were surface sterilised with 0.2 per cent mercuric chloride (for 5 min) which gave 100 per cent survival without any contamination. Enhanced release of axillary buds from single nodal explants, with maximum shoot proliferation (5.28 shoots/culture) was obtained in the medium, MS + BA 1.5 mg l-1 + IAA 1.0 mg l-1. The best response (10.67 roots/culture) of in vitro rooting of plantlets was obtained in the medium, MS + NAA 1.0 mg l-1. In vitro rooted plants gave a maximum survival rate of 76 per cent and 72 per cent, when planted out in potting media consisting of red soil and coir pith (3:1) and red soil and coir pith (2:1) supplemented with VAM respectively at 25 per cent shade. In cryopreservation studies, preconditioning treatment (sucrose 0.5 M for 7 days) recorded maximum shoot proliferation (2.67 shoots/culture) when nodal segments with single axillary bud were cultured on MS + BA 1.5 mg l-1 + IAA 1.0 mg l-1 medium. Among different encapsulation treatments, maximum shoot proliferation of (2.31 shoots/culture) was obtained in beads formed with sodium alginate 2.5 per cent and calcium chloride 100 mM, when cultured on the medium, MS + BA 1.5 mg l-1 + IAA 1.0 mg l-1. Pre-culture medium supplemented with sucrose 0.5 M for 3days gave maximum shoot proliferation (3.44 shoots/culture) when cultured on the medium, MS + BA 1.5 mg l-1 + IAA 1.0 mg l-1. A desiccation duration of 5 h at 18.13 per cent moisture level was found to be most effective giving 66.67 per cent survival and 62.50 per cent regeneration on thawing and culturing on the recovery medium MS + BA 1.5 mg l-1 + IAA 1.0 mg l-1. The beads when stored in liquid nitrogen for different duration and cultured on recovery medium did not show any significant variation with respect to survival per cent. RAPD markers were tried to study the genetic fidelity of the regenerated plantlets from encapsulated and cryopreserved axillary buds. Six primers were screened and RAPD banding patterns of the cryoregenerated plantlets and control plants were compared. Polymorphism was not found with any of the primers tested. RAPD profiles of cryoregenerated plantlets were identical to those of the control. The in vitro regeneration protocol optimized included surface sterilization of single node cuttings with 0.2 per cent HgCl2 for 5 min, axillary shoot proliferation in MS medium supplemented with BA 1.5 mg l-1 and IAA 1.0 mg l-1, in vitro rooting in MS medium supplemented with NAA 1.0 mg l-1 and planting out in potting medium, red soil and coir pith (3:1). The protocol for encapsulation dehydration technique of cryopreservation was standardised for the axillary buds of P. rosea with preconditioning in semi solid MS medium supplemented with sucrose 0.5 M for 7 days, encapsulation using sodium alginate 2.5 per cent and calcium chloride 100 mM followed by pre-culture in liquid MS supplemented with sucrose 0.5 M for 3 days and 5 h dehydration (MC 18.13 %), rapid freezing in LN for at least 2 h and recovery in the medium MS + BA 1.5 mg l-1 + IAA 1.0 mg l-1. The cryopreservation protocol using encapsulation-dehydration technique standardised could be utilised for long-term conservation of P. rosea.
  • ThesisItemOpen Access
    Participatory action research for renumerative rice production
    (Department of Agricultural extension, College of Horticulture, Vellanikkara, 2004) Parvathy, S; KAU; Ahamed, P
    As with the Complex, Diverse and Risk- prone (CDR) rice systems of many Asian countries, the Kerala state of peninsular India suffers from the fast depleting paddies and the ' high cost- low remuneration syndrome'. Crucial rice technologies have been blamed by stakeholders for the insensitivity to micro farming situations A multidisciplinary stakeholder Participatory Action Research (PAR) of emancipatory type and collaborative mode was done for three years (2001-2004) on identification and prioritization of constraints to profitable rice production to explore the available cost-reducing and productivity increasing technological options. The project focussed on screening of technological modules through farmer participatory field assessment and arrived at locally adaptable and remunerative technology packages. The project also developed and standardised an extrapolatable stakeholder participatory assessment model and protocol. The programme had a blend of extension approaches, research designs and tools like "ex-post facto", benchmark appraisal through Participatory Learning and Action (PLA), exploratory, diagnostic, evaluative, field experiments and analytical studies. The PAR was done in two rice ecosystems (irrigated and rainfe:l) of the midland, laterite belt of Kerala state, India. Fourteen technology modules were fitted into the PAR, under .. , each of the three treatments, viz., farmers' practice, recommended packages of the formal research system and location specific I technology components" jointly decided by the research team extensionists and farmers. Each technology component was subjected to five types of analysis viz., agronomic, statistical, economic, farmers perceptions and reactions, post-trial follow up analysis of adoption in the succeeding cropping seasons. The participatory interventions significantly influenced the level of technical knowledge and extent of adoption of adaptable technology modules, typifying the cognitive impact of an emancipating action research. The short duration red rice varieties "Kanchana" (Ptb 50) and "Kairali" (Ptb 49) proved to be the best first crop and second crop varieties respectively, to replace the ruling cultivars. The technology modules recommended by the formal research system viz., seed treatment with fungicides for the first crop season and Pseudomonas fluorescence for the second crop season were adaptable technologies. The PAR came out with an efficient planting density and crop geometry package (line transplanting; 15 x 10 cm; 67 . , hills/m'; 2-3 seedlings/hill) to replace the conventional planting system. The existing formal recommendations including IPM and INM practices could enhance and combat weeds, pest and diseases thereby enhancing crop yield. Harvesting with self- propelled reaper and threshing with mechanised thresher were cost effective, drudgery alleviating and time saving. The net result of the action research was a set of adaptable technological package for remunerative rice production in the CDR rice production systems. Cognitive and behavioural impact on the participants; and the standard methodology and protocol for participatory technology validation for rice in particular, and for any farm enterprise in general, with extrapolative effect.