Loading...
Thumbnail Image

Kerala Agricultural University, Thrissur

The history of agricultural education in Kerala can be traced back to the year 1896 when a scheme was evolved in the erstwhile Travancore State to train a few young men in scientific agriculture at the Demonstration Farm, Karamana, Thiruvananthapuram, presently, the Cropping Systems Research Centre under Kerala Agricultural University. Agriculture was introduced as an optional subject in the middle school classes in the State in 1922 when an Agricultural Middle School was started at Aluva, Ernakulam District. The popularity and usefulness of this school led to the starting of similar institutions at Kottarakkara and Konni in 1928 and 1931 respectively. Agriculture was later introduced as an optional subject for Intermediate Course in 1953. In 1955, the erstwhile Government of Travancore-Cochin started the Agricultural College and Research Institute at Vellayani, Thiruvananthapuram and the College of Veterinary and Animal Sciences at Mannuthy, Thrissur for imparting higher education in agricultural and veterinary sciences, respectively. These institutions were brought under the direct administrative control of the Department of Agriculture and the Department of Animal Husbandry, respectively. With the formation of Kerala State in 1956, these two colleges were affiliated to the University of Kerala. The post-graduate programmes leading to M.Sc. (Ag), M.V.Sc. and Ph.D. degrees were started in 1961, 1962 and 1965 respectively. On the recommendation of the Second National Education Commission (1964-66) headed by Dr. D.S. Kothari, the then Chairman of the University Grants Commission, one Agricultural University in each State was established. The State Agricultural Universities (SAUs) were established in India as an integral part of the National Agricultural Research System to give the much needed impetus to Agriculture Education and Research in the Country. As a result the Kerala Agricultural University (KAU) was established on 24th February 1971 by virtue of the Act 33 of 1971 and started functioning on 1st February 1972. The Kerala Agricultural University is the 15th in the series of the SAUs. In accordance with the provisions of KAU Act of 1971, the Agricultural College and Research Institute at Vellayani, and the College of Veterinary and Animal Sciences, Mannuthy, were brought under the Kerala Agricultural University. In addition, twenty one agricultural and animal husbandry research stations were also transferred to the KAU for taking up research and extension programmes on various crops, animals, birds, etc. During 2011, Kerala Agricultural University was trifurcated into Kerala Veterinary and Animal Sciences University (KVASU), Kerala University of Fisheries and Ocean Studies (KUFOS) and Kerala Agricultural University (KAU). Now the University has seven colleges (four Agriculture, one Agricultural Engineering, one Forestry, one Co-operation Banking & Management), six RARSs, seven KVKs, 15 Research Stations and 16 Research and Extension Units under the faculties of Agriculture, Agricultural Engineering and Forestry. In addition, one Academy on Climate Change Adaptation and one Institute of Agricultural Technology offering M.Sc. (Integrated) Climate Change Adaptation and Diploma in Agricultural Sciences respectively are also functioning in Kerala Agricultural University.

Browse

Search Results

Now showing 1 - 2 of 2
  • ThesisItemOpen Access
    Prevalence of yeast and yeast like fungi in bovine mastitis and their in vitro drug sensitivity
    (Department of Microbiology, College of Veterinary and Animal Sciences, Mannuthy, 1995) Sukumar, K; KAU; James, P C
    The present investigation was undertaken to identify the the biochemical polymorphism at serum alkaline phospha tase (SAP) loci and to study the heterogenity of SAP variation in crossbred cattle It was also envisaged to analyse the association of SAP variation and traits of economic importance such as milk production and composition of milk One hundred and ten animals belonging to two different crosses of local nondescript cattle viz Crossbred Holstein Friesian (57) and Crossbred Brown Swiss (53) were typed for SAP variance by standardising Horizontal Polyacrylamide Gel Electrophoresis (PAGE) Two genotypes FS and SS were determined The highest frequency of FS genotype was in Holstein Friesian crossbred than in Brown Swiss crossbred The genotype FF was absent in both the crossbreds The highest frequency of SS genotype was in Brown Swiss crossbred than in Holstein Friesian crossbreds Two alleles namely pF and P$ with two phenotypes FS and SS were identified as SAP locus pT allele had the frequency of 0 20 and pS allele had the frequency of 0 80 in the pooled crossbreds Both the Holstein Friesian crossbreds and Brown Swiss crossbred are in genetic equilibrium at the SAP loci No association could be established between milk yield (305 days) and serum alkaline phosphatase level A non significant negative correlation existed between milk fat percentage and SAP level whereas a significant positive correlation existed between milk SNF percentage and SAP level The correlation between SAP level and milk total solids were found to be negative and non significant in Brown Swiss crossbreds whereas a non significant positive correlation existed between the SAP level and milk total solids in Holstein Friesian crossbreds Animals belonging to the FS genotype are better milk producers compared to the SS genotype For higher fat percentages the performance of SS genotype was compara tively better The performance of SS genotype is better for producing milk with more than 8 5 percentage of SNF FS genotype performed better for producing milk having higher percentage of total solids
  • ThesisItemOpen Access
    Prevalence of yeast and yeast like fungi in bovine mastitis and their in vitro drug sensitivity
    (Department of Microbiology, College of Veterinary and Animal Sciences, Mannuthy, 1996) Sukumar, K; KAU; James, P C
    A total of 200 milk samples from clinical cases of bovine mastitis were culturally screened during a period of six months. Pathogenic fungal organisms could be isolated only from 26 samples. Out of this 26 positive samples, yeast and yeast like fungal organisms were isolated from 20 samples and mould from six cases. The major pathogen isolated were candida spp namely C. tropicalis, C. parapsilosis and C. guillermondi. The other organisms were Geotrichum candidum, Trichosporon cutaneum, Sacharomyces cerevisiae, Torulopsis spp and Rhodotorula rubra. The filamentous fungi isolated were Sepedonium spp, Aspergillus ochraceous group, Cladosporium carrionii, Penicillium spp and Trichophyton verrucosum. In majority of the cases yeast and yeast like fungi produced chronic mastitis in which hardness of udder and reduction in milk yield with watery milk containing flakes were noticed. In cases of mastitis where in mould was involved, chronic mastitis characterized by hardness of udder and reduction in milk yield with straw yellow coloured milk, viscid in consistency. Sensitivity pattern of the fungal isolates to the commonly employed antifungal chemotherapeutic agents like Amphotericin B, Clotrimazole, Fluconazole, Griseofuivin, Itraconazole, Ketocanazole, Nystin and Pimaricin (Natamycin) was elucidated. Among the above agents Clotrimazole and Itraconazole exhibited maximum inhibitory activity. All the isolates were found to be resistant to Griseofulvin. In vitro drug sensitivity pattern of fungal isolates employing the discs impregnated with essential oils of cinnamon, clove and lemon grass and alksloids of Cassia alata was studied. Cinnamon leaf oil possessed maximum antifungal activity and the extracts of Cassia alata failed to evince the ability to inhibit the growth of fungal isolates. The antifungal activity of plant extracts were compared with the commonly antifungal chemotherapeutic agents.