Loading...
Thumbnail Image

Kerala Agricultural University, Thrissur

The history of agricultural education in Kerala can be traced back to the year 1896 when a scheme was evolved in the erstwhile Travancore State to train a few young men in scientific agriculture at the Demonstration Farm, Karamana, Thiruvananthapuram, presently, the Cropping Systems Research Centre under Kerala Agricultural University. Agriculture was introduced as an optional subject in the middle school classes in the State in 1922 when an Agricultural Middle School was started at Aluva, Ernakulam District. The popularity and usefulness of this school led to the starting of similar institutions at Kottarakkara and Konni in 1928 and 1931 respectively. Agriculture was later introduced as an optional subject for Intermediate Course in 1953. In 1955, the erstwhile Government of Travancore-Cochin started the Agricultural College and Research Institute at Vellayani, Thiruvananthapuram and the College of Veterinary and Animal Sciences at Mannuthy, Thrissur for imparting higher education in agricultural and veterinary sciences, respectively. These institutions were brought under the direct administrative control of the Department of Agriculture and the Department of Animal Husbandry, respectively. With the formation of Kerala State in 1956, these two colleges were affiliated to the University of Kerala. The post-graduate programmes leading to M.Sc. (Ag), M.V.Sc. and Ph.D. degrees were started in 1961, 1962 and 1965 respectively. On the recommendation of the Second National Education Commission (1964-66) headed by Dr. D.S. Kothari, the then Chairman of the University Grants Commission, one Agricultural University in each State was established. The State Agricultural Universities (SAUs) were established in India as an integral part of the National Agricultural Research System to give the much needed impetus to Agriculture Education and Research in the Country. As a result the Kerala Agricultural University (KAU) was established on 24th February 1971 by virtue of the Act 33 of 1971 and started functioning on 1st February 1972. The Kerala Agricultural University is the 15th in the series of the SAUs. In accordance with the provisions of KAU Act of 1971, the Agricultural College and Research Institute at Vellayani, and the College of Veterinary and Animal Sciences, Mannuthy, were brought under the Kerala Agricultural University. In addition, twenty one agricultural and animal husbandry research stations were also transferred to the KAU for taking up research and extension programmes on various crops, animals, birds, etc. During 2011, Kerala Agricultural University was trifurcated into Kerala Veterinary and Animal Sciences University (KVASU), Kerala University of Fisheries and Ocean Studies (KUFOS) and Kerala Agricultural University (KAU). Now the University has seven colleges (four Agriculture, one Agricultural Engineering, one Forestry, one Co-operation Banking & Management), six RARSs, seven KVKs, 15 Research Stations and 16 Research and Extension Units under the faculties of Agriculture, Agricultural Engineering and Forestry. In addition, one Academy on Climate Change Adaptation and one Institute of Agricultural Technology offering M.Sc. (Integrated) Climate Change Adaptation and Diploma in Agricultural Sciences respectively are also functioning in Kerala Agricultural University.

Browse

Search Results

Now showing 1 - 9 of 755
  • ThesisItemOpen Access
    User centered design, development, and end-user assessment of an M-tool for vegetable cultivation in polyhouse
    (Department of Agricultural Extension, College of Agriculture,Vellanikkara, 2022-05-20) Poornima C P; KAU; A Sakeer Husain
    Hi-tech farming is gaining grip in Indian farming system. Polyhouse farming which is a subset of hi-tech farming is an alternate new system of crop production which reduces dependency on climatic factors along with economic use of water, fertilisers and other inputs necessarily needed for farming. In a state like Kerala where per capita availability of land is less and density of population is increasing, the polyhouse can be a boon to the farmers. With advancing technologies, proper information delivery system must be there to make f armers get updated with the progress in agriculture. As Information and Communication Technology (ICT) tools are acquiring its foothold even among the rural communities, proper utilisation of suitable tools can help farmers to get more insight of the advances and in turn aid in efficient decision making.
  • ThesisItemOpen Access
    Performance analysis of farmer producer companies (FPCs) in Kerala
    (Department of Agricultural Extension, College of Agriculture, Vellanikkara, 2022-05-28) Akhil Ajith; KAU; Bonny,Binoo P
    Farmer Producer Companies (FPCs) are institutional innovations that hold tremendous potential in influencing the agricultural value chains by creating economic profit and social value. As such, the standard measures of financial analysis alone cannot provide an overall indication of the performance of these organisations.Therefore, an attempt to use integrated dimensions of socio-economic parameters were pursued in the present study to delineate the factors affecting the performance of FPCs and in the development of a performance index to grade the FPCs. The results of thestudy also helped in evolving policy recommendations that could improve the performance of FPCs in a sustainable way. The study followed ex-post facto research design conducted among 30 FPCs selected randomly from the 14 districts of Kerala. Proportionate random sampling was employed to ascertain the number of FPCs selected from each district and to identify 120 shareholders. Random and exhaustive sampling was followed respectively in the selection of 60 director board members and 30 CEOs to make the total sample size of 210.
  • ThesisItemOpen Access
    Gene action and gene expression analysis in yardlong bean(Vigna unguiculata ssp. sesquipedalis(L.) Verdcourt) for drought tolerance
    (Department of Plant Breeding and Genetics, College of Agriculture, Vellayani, 2022) Rahana, S N; KAU; Beena Thomas
    Yard long bean (Vigna unguiculata ssp. sesquipedalis (L.) Verdcourt) is a highly remunerative legume vegetable of Kerala. Due to climate change and erratic rainfall, in summer season the crop growth and pod production is heavily affected by moisture stress. Development of high yielding varieties of yard long bean with drought tolerance is essential for its sustainable production. In this context, the present study entitled "Gene action and gene expression analysis in yard long bean (Vigna unguiculata ssp. sesquipedalis (L.) Verdcourt) for drought tolerance" was carried out in the Department of Plant Breeding and Genetics, College of Agriculture, Vellayani, with an objective to identify drought tolerant genotype from the available germplasm and to understand the nature and magnitude of gene action and gene expression involved in the inheritance of drought tolerance in yard long bean. The study comprised four experiments. First experiment dealt with the seedling stage evaluation of 100-yard-long bean genotypes for drought tolerance in field. The moisture stress was imposed by withholding irrigation and later irrigation was restored in order to ensure the survival of the tolerant lines. The results of the analysis showed significant variations among genotypes. Out of the 100 genotypes screened, 15 drought tolerant genotypes were identified based on their better performance in terms of high RLW, low PWP, more number of days for reaching critical stress level and high recovery percentage. The genotypes identified were G1 (Acc 5), G5 (Acc 1339), G6 (Adoor local), G14 (Anchal local II) G15 (Aranmula local), G24 (Elamadu local), G36 (Kattampally local), G42 (Kollam local), G45 (Kottarakara local), G46 (Kottayam local), G50 (Kulashegarapuram local), 051 (Kulathupuzha local), G60 (Muttathukonam local), G74 (Nilamcl local) and G89 (Pongamoodu local). The fifteen selected genotypes from the first experiment were evaluated for drought tolerance in the second experiment by imposing moisture stress at the reproductive stage. Based on the biometric and physiological evaluations, the top seven genotypes with high yield and drought tolerance A4 (Anchal local II), A5 (Aranmula local), A7 (Kattampally local). All (Kulashegarapuram local), A13 (Muttathukonam local), A14 (Nilamel local), and A15 (Pongamoodu local) were selected as parents for further hybridization in experiment in. In the third experiment, LxT crosses were performed by using seven selected tolerant genotypes as lines with three popular yard long bean varieties as testers to generate twenty one hybrids. The genetic analysis of hybrids and parents were evaluated based on eight morphological and eight physiological parameters. Mean performance, combming ability, gene action and heterosis were estimated. Based on the mean performance and gca effects, L4 (Kulashegarapuram local) and L3 (Kattampally local) are identified as outstanding general combiners and can be exploited as parents for drought tolerance breeding in yard long bean. Three superior crosses, Kattampally local x Vellayani Jyothika (L3 x T3), Nilamel local X Lola (L6 X T2) and Kulashegarapuram local x Lola (L4 x T2) were identified as promising combinations for drought tolerance and yield xmder water stress. In the final experiment quantitative real time PCR was conducted to analyze the gene expression of drought responsive genes in tolerant hybrids and parents. The elevated expression of DREBs and NCEDl genes in tolerant hybrids and genotypes in gene expression analysis reflects the increased drought tolerance ability of those genotypes. The gene expression analysis was in conformity with the field studies. All the hybrids mamfested significant amount of dominance variance for commercial exploitation. Existence of significant amoimt of dominance variance and non-additive gene action suggests that hybridization as the best strategy for improving the drought tolerance character in yard long bean. The identified genotypes can be used for isolation of purelines with enhanced drought tolerance and the transgressive segregants from the identified crosses can be used for the development of drought tolerant high yielding cultivars in the fixture. The work can be continued with the identified genotypes and crosses for the development of climate smart drought tolerant varieties of yard long bean.
  • ThesisItemOpen Access
    Exploration on the links between soil carbon storage and root biomass and elucidation of drivers of carbon stabilization
    (Department of Soil Science and Agricultural Chemistry, College of Agriculture, Vellayani, 2022) Geethu Jacob; KAU; Manorama Thampatti, K C
    The study entitled ―Exploration on the links between soil carbon storage and root biomass and elucidation of drivers of carbon stabilization‖ was conducted at the Department of Soil Science and Agricultural Chemistry, College of Agriculture, Vellayani during November 2019 to September 2021 with the objective to study the links between soil carbon storage and root biomass in soils of different agro ecological units and to identify the key drivers of C stabilization and NP fluxes under different management practices. The study area comprised of three Agro ecological units (AEUs) of Southern Kerala viz. Southern and Central Foot Hills (AEU 12), Southern High Hills (AEU 14) and Kumily High Hills (AEU 16). The study was carried out in three parts namely exploration on the links between soil organic C and NP pools with root biomass in soils of different AEUs, assessment of carbon storage under different land use system and identifying the drivers of C stabilization and field experiments to study the effect of management practices on the link between root and shoot biomass C and SOC and NP pools. For the study exploration on the links between soil organic C and NP pools with root biomass in soils of different AEUs, the study area was surveyed and geocoded soil samples from 0-20 cm and 20-60 cm depth were collected using core samplers. The root biomass from the soil samples were separated out and weighed. The soil samples were analyzed for its various physical, chemical and biological properties. For assessment of carbon storage under different land use system and identifying the drivers of C stabilization, the most prominent land use system of each AEU was identified and five samples were collected from each system. The sampling size was one sq.m to a depth of 60 cm. The plants of the same area were uprooted and their shoot and root biomass were recorded. Both the soil and plant samples were collected and analysed for various parameters. The field experiment in split plot design on grain cowpea – fodder maize cropping sequence was laid out with the main plot treatments as m1: conventional tillage, m2: deep tillage (30 cm depth) and m3: no till and sub plot treatments as s1: POP recommendation, s2: soil test based POP, s3: organic nutrient management (TOF-F), s4: POP + AMF, s5: soil test based POP + AMF, s6: TOF-F + AMF and s7: absolute control. After the harvest of grain cowpea, shoot biomass were removed and roots were retained in three replications and in the other three replications total biomass of grain cowpea were added into the soil and left for decomposition. After that fodder maize was raised in the field and the crop and soil samples were collected and analysed for various parameters. The results of the Part I revealed that the physical properties like bulk density (BD) and gravel per cent of all the AEUs showed an increase towards depth while the electrochemical properties showed a decrease. Among the different AEUs, AEU 16 recorded lowest BD (1.22 Mg m-3 ) and gravel per cent (30.53 %) and had a subsoil increase of 12 per cent and 17 per cent for BD and gravel per cent respectively. The different fractions of soil C and N showed a decrease with depth for all AEUs. The soil total organic carbon (TOC-5.94 %) and recalcitrant C (RC-1.64 %) content were highest for AEU 14 with a decrease of 26 per cent and 31 per cent respectively for subsoil. The highest dissolved organic C (DOC-54.63 mg kg -1 ) and labile C (LC- 877.50 mg kg -1 ) content were for AEU 16 with a subsoil decrease of 45 per cent and 27 per cent respectively. AEU 12 recorded lower values for C fractions which may be due to decreased root biomass by 38 per cent and 25 per cent in surface soil and 55 per cent and 70 per cent in subsoil than that of AEU 14 and AEU 16 respectively. The root biomass and soil C fractions were positively and significantly correlated at both sampling depths. The highest correlation coefficients between root biomass and soil C fractions were recorded by DOC (0.976) followed by RC (0.931) and LC (0.975) followed by DOC (0.953) for surface and subsoil respectively. From the regression analysis perfect fit towards linear regression model, expressed as R2 value, was highest for DOC (0.95) and LC (0.94) at sampling depths of 0-20 cm and 20-60 cm respectively. The different fractions of N were highest for AEU 12 and surface soil showed an increase in total nitrogen (TN) by 6 per cent and NH4-N by 20 per cent, NO3 – N by 18 per cent and organic N (ON) by 5 per cent than subsoil. For soil P fractions an increase was observed with depth and AEU 12 recorded highest values for P fractions. Among soil N and P fractions, ON and labile P (LP) were found to be more correlated to root biomass and with higher R2 values at both sampling depths. The MBC (26.89 mg kg -1 ) and DHA (34.94 µg TPF g-1 24 hr-1 ) were highest for AEU 16 and surface soil showed an increase in MBC by 28 per cent and DHA by 30 per cent, than subsoil. For part II, the most prominent land use system of each AEU were identified as rubber plantations for AEU 12 and AEU 14 and cardamom plantations for AEU 16. The rubber plantations of AEU 14 recorded highest C storage (434.0 t ha-1 ) and lowest value was observed for cardamom plantations of AEU 16 (329.9 t ha-1 ). The soil physical properties and electrochemical properties behaved similar to that of Part I. Cardamom plantations of AEU 16 recorded lowest BD (0.97 Mg m-3 ) and gravel content (28 %) while AEU 12 had highest pH (5.61) and lowest EC (0.39 dS m-1 ). Among the different land use systems, rubber plantations of AEU 14 recorded highest values for soil TOC (6.72 %) and DOC (55.16 mg kg-1 ) content while cardamom plantations had highest soil LC (910.91 mg kg-1 ) and surface soil RC (1.92 %) content but subsoil RC content was more for rubber plantations of AEU 14. In rubber plantations the root biomass were correlated to all C fractions and more correlated to RC and TOC and in cardamom plantations root biomass were significantly correlated to TOC (0.98) and DOC (0.95) fractions only. A significant and positive correlation between root lignin and soil C fractions (RC and TOC) was also observed. The different fractions of N and P were highest for cardamom plantations of AEU 16 and surface soil showed an increase in TN by 5 per cent, NH4-N by 14 per cent, NO3– N by 22 per cent and ON by 4 per cent than subsoil and a subsoil increase of TP by 12 per cent, LP by 29 per cent and NLP by 11 per cent were also observed. The shoot biomass were more correlated to soil N and P fractions than root biomass and were more correlated to ON and TN and to TP and NLP among soil N and P fractions respectively. A significant positive correlation between N and P removal and soil NP pools were also obtained. The MBC and DHA were highest for cardamom plantations of AEU 16 and surface soil showed an increase in MBC by 25 per cent and DHA by 23 per cent than subsoil. In the field experiment, among the various nutrient management treatments, soil test based POP + AMF (s5) recorded the highest plant height, shoot biomass and grain yield plant-1 (107.70 g) and TOF-F + AMF (s6) showed highest values for root characteristics and quality parameters for grain cowpea. Similarly for fodder maize grown under both conditions, the treatment soil test based POP + AMF (s5) gave highest shoot biomass, fodder yield and quality parameters while highest root biomass were recorded by the treatment, TOF-F + AMF (s6). Among the tillage levels, the no till treatment (m3) performed best in connection with growth, yield and quality characteristics throughout the cropping period. Tillage and nutrient management had significantly influenced various soil properties. The lowest soil BD and higher WSA per cent and soil pH were reported by the treatment TOF-F + AMF (s6) throughout the cropping sequence. Among tillage levels, deep tillage (m2) remained superior for soil BD and pH and no till treatment (m3) for WSA per cent respectively. The treatment, TOF-F + AMF (s6) remained superior for soil C fractions viz., TOC, LC and RC content, mineralizable N fractions (NH4-N and NO3-N), labile P and MBC content and dehydrogenase activity throughout the cropping sequence. The treatment, soil test based POP +AMF (s5) recorded higher values for NP fractions like TN, ON, TP and non labile P (NLP). Among the tillage levels, the no till treatment (m3) remained superior in connection with soil chemical and biological properties especially towards the end of cropping period. As the cropping sequence advances an improvement in soil physical, chemical and biological properties were observed and this is mainly attributed to the crop residue addition of grain cowpea and more improvement was observed for total residue incorporation than root residue alone addition. The soil C pools were highly linked to root biomass and NP pools to shoot biomass. The root biomass and root lignin were the main drivers of C stabilization. The treatments with AMF remained superior in various soil properties and yield and growth attributes emphasizing the favourable role of AMF in C storage and nutrient cycling in soils. With regard to nutrient management, soil test based POP + AMF recorded the highest yield in cropping sequence while organic nutrition (TOF-F) + AMF contributed more to soil properties indicating the need for further research on nutrient translocation and assimilation under organic nutrition. The no tilled condition with total residue incorporation responded better than root residue alone incorporation, hinting to the fact that more organic matter contributing practices improved the physicochemical and biological conditions of soils favourably.
  • ThesisItemOpen Access
    Mealybugs of vegetable ecosystems and tritrophic interactions of brinjal mealybugs
    (Department of Agricultural Entomology, College of Agriculture ,Vellayani, 2022) Anitha, N; KAU; Mithra, Mohan
    The study on “Mealybugs of vegetable ecosystems and tritrophic interactions of brinjal mealybugs” was conducted at College of Agriculture, Vellayani during 2017 to 2020 with the objectives to identify mealybugs and their natural enemy fauna in solanaceous and cucurbitaceous vegetables, to carry out the molecular characterization of mealy bugs in solanaceous and cucurbitaceous vegetables and to find out the tritrophic interactions of mealybugs infesting brinjal. An investigation on mealybug diversity in solanaceous and cucurbitaceous crops of Kerala revealed a total of six mealybug species viz., Coccidohystrix insolita, Ferrisia virgata, Paracoccus marginatus, Phenacoccus solenopsis, Planococcus citri and Pseudococcus jackbeardsleyi. Besides, four mealybugs viz., Crisicoccus hirsutus, Maconellicoccus hirsutus, Planococcus lilacinus and Rastrococcus iceryoides infesting other vegetable crops were also recorded from Kerala. The study also revealed that the population of mealybug, C. insolita collected from different regions of Kerala exhibited significant morphological variation. The molecular characterization studies proved that the population belongs to C. insolita and the variations may be environmental induced. An exploration of the host range of mealybugs infesting solanaceous and cucurbitaceous vegetables in Kerala revealed a total of 113 plants under 73 genera belonging to 31 families, out of which 14 plants were recorded as new host reports. A rich natural enemy fauna on mealybugs belongs to five orders viz., Coleoptera, Lepidoptera, Diptera, Neuroptera and Hymenoptera were documented from Kerala. Twenty species of mealybug predators from five different families were recorded, among which the predominant family was Coccinellidae with 16 species under six genera. Among the various predators collected, Cacoxenus sp. was recorded for the first time as a predator of P. jackbeardsleyi. Eleven hymenopteran parasitoids belonging to five families were documented from mealybugs, of which the majority belongs to the family Encyrtidae. Four new host-parasitoid associations were also recorded for the first 288 time. The study also identified six hyperparasitoids under the family Encyrtidae, of which two species were recorded as new report which includes Cheiloneurus sp. and Prochilonerus sp. associated with the mealybug P. solenopsis. The ants associated with mealybugs in different agroecosystems were also investigated and a total of 14 species of ants belonging to nine genera under three subfamilies were recorded, of which the most dominant subfamily was Formicinae followed by Myrmicinae and Dolichoderinae. The present study also revealed 15 new ant-mealybug associations for the first time. The molecular characterization of eight mealybug species was carried out that complemented the morphological identification of species. A total of eight nucleotide sequences were submitted to NCBI GenBank and accession numbers were generated. The sequences were also submitted to BOLD and illustrative barcodes were generated. The barcodes of C. insolita, C. hirsutus and P. jackbeardsleyi were generated for the first time. The diversity of endosymbionts of the mealybug C. insolita was carried out for the first time. The study revealed a total of 15 phyla of endosymbionts on C. insolita, of which Proteobacteria was the predominant one. An experiment was conducted at Instructional Farm, Vellayani to identify the tritrophic interaction in brinjal, C. insolita and its natural enemies. The study revealed that out of the ten brinjal cultivars evaluated, the lowest mean population of mealybugs was observed in Pusa Uttam whereas the hybrid cultivar, Udit recorded the highest number of mealybugs. The lowest mean per cent leaf infestation was recorded in Pusa Purple Long which was statistically on par with Pusa Uttam whereas the hybrid cultivar, Udit was severely damaged by the mealybugs. Among the tested cultivars, Pusa Purple Long was recorded under the group resistant whereas Udit and Haritha were included under the highly susceptible group based on the mean per cent leaf infestation caused by C. insolita. The cultivar Haritha attracted the highest number of predators whereas the maximum mean population of spiders were observed in Pusa Purple Long. 289 The correlation analysis on the mean population of mealy bugs with biophysical parameters revealed that trichome density, length width ratio of leaf and number of branches exhibited a significant positive correlation with mean population of mealybugs. Correlation studies on the mean population of natural enemies with biophysical parameters revealed that plant height exhibited a significant negative correlation whereas leaf thickness and number of branches revealed a non-significant negative correlation with the mean population of natural enemies. Among the biochemical parameters of brinjal cultivars, total phenol content exhibited a significant negative correlation with the mean population of mealybugs whereas total chlorophyll content showed a significant positive correlation. The correlation between biochemical parameters of brinjal cultivars with the mean population of natural enemies revealed that total phenol and carotenoid content exhibited a non-significant negative correlation whereas total protein content, reducing sugar and total chlorophyll content showed a nonsignificant positive correlation. The info-chemical mediated interactions in brinjal cultivars, mealybug and its natural enemies were studied using a multi-armed olfactometer and Y-shaped olfactometer assay. The results revealed that the cultivar Udit attracted the highest number of natural enemy Chrysoperla zastrowii sillemi while the cultivar Pusa Uttam attracted the lowest number. The variation in preference shown by the natural enemies may be related to the difference in volatile compounds emanating from the host cultivar. The GC-MS analysis of the synomonal compounds of the cultivar, Udit revealed a total of eleven compounds whereas the cultivar Pusa Uttam was recorded with a total of five compounds. The Y shaped olfactometer studies revealed that C. zastrowi sillemi adults showed more preference towards the synomonal compounds of mealybug infested plants than that of healthy plant synomonal extracts. On comparing the volatile profile of synomones of mealybug infested and healthy plants revealed that the synomonal extracts of the mealybug infested cultivar Udit comprised of 11 compounds whereas healthy plant synomonal extracts contained nine compounds. 290 The relative response of C. zastrowi sillemi towards the kairomonal compounds of C. insolita was evaluated in a Y tube olfactometer and the results revealed that the highest mean number of adult lacewings were attracted to the kairomonal compounds of mealybug compared to control. The kairomonal extracts of the mealybug comprised of seven compounds and the composition of these hydrocarbons may determine the selectivity of natural enemies towards the preferred host. The present study recorded a total of six mealybug species infesting solanaceous and cucurbitaceous vegetables and its host range, natural enemies and associated ants in different agro ecological regions of Kerala. The molecular characterization studies supported the morphological taxonomy and the sequences were submitted to NCBI Genbank and BOLD. The study also elucidated the interactions mediated by plant traits and info-chemicals in brinjal-mealybugnatural enemy tritrophic systems. The study recorded Pusa Purple Long as resistant cultivar and Udit and Haritha as highly susceptible cultivar to C. insolita. The plant traits viz., trichome density, length width ratio of leaf, number of branches, total phenol content and total chlorophyll content exhibited significant correlation with mean population of mealybugs whereas plant height exhibited significant correlation with mean population of natural enemies. The study on info-chemical mediated tritrophic interactions revealed that the concentration and composition of volatile compounds determine the differential selectivity of natural enemies. The volatile compounds identified in this study can also be used as a cue in moderating the behavior of natural enemies in the ecosystems. So a thorough knowledge on the tritrophic relations in the ecosystem will aid in manipulating these interactions to devise a better pest management strategy.
  • ThesisItemOpen Access
    Protocol development for gel stabilization and nutraceuticals in aloe vera (L.) Burm. f.
    (Department of Plantation Crops and Spices, College of Agriculture, Vellayani, 2021) Maheswari R S Nair; KAU; Sreekala, G S
    The investigation entitled “Protocol development for gel stabilization and nutraceuticals in Aloe vera (L.) Burm. f.” was carried out in the Department of Plantation Crops and Spices, College of Agriculture, Vellayani during March 2016 to December 2019. The project envisaged formulation of a low cost stabilization technique for aloe gel using herbal extracts and aromatic oils and development of protocols for the preparation of dried latex and marketable nutraceuticals using aloe gel. The study was carried out as four experiments. The first experiment was to study the keeping quality and natural spoilage flora of fresh gel while the second experiment was for the standardization of curacao aloe (dried latex). The third experiment was on gel stabilization using herbal extracts and essential oils. Preparation of nutraceuticals from the stabilized liquidized aloe gel juice was the final experiment. The keeping quality and natural spoilage flora of fresh gel were assessed by subjecting the liquidized aloe gel juice to storage in glass bottles under ambient condition for seven days. The liqudized aloe gel juice was off white in colour for first three days of extraction with mild vegetative odour and got sedimented with foul smell from fourth day onwards. The liquidized aloe juice could not be stored for more than a day due to increased microbial population from the second day of storage. Preliminary trails conducted by pasteurizing the liquidized aloe gel juice at 65 0C and 15 psi pressure for 13 minutes followed by flash cooling registered no microbial population even after seven days of storage. The latex collected from aloe leaves was subjected to different methods of drying such as boiling followed by cooling, sun drying, shade drying and oven drying. Appearance, colour and aloin content (271.62 mg/ml) of dried latex was significantly higher for shade drying. Liquidized aloe gel juice was pasteurized and added with varying concentrations of three forms (aqueous, tincture, decoction) of herbal extracts and essential oils after adjusting the pH to 3.5 by adding 0.5 per cent of citric acid for gel stabilization. The treated samples were kept for a month and based on microbial population and minimum inhibitory concentration best treatment of each form was selected from preliminary trials for aloe gel stabilization. Gymnema sylvestre aqueous extract (1 ml), tincture (1 ml), decoction (2 ml), Centella asiatica aqueous extract (1 ml), tincture (2 ml), decoction (1 ml), Achyranthes aspera aqueous extract (2 ml), tincture (2 ml), decoction (1.50 ml), Tridax procumbens aqueous extract (2 ml), tincture (2 ml) , decoction (1 ml), Terminalia chebula aqueous extract (1 ml), tincture (1 ml), decoction (1 ml), Punica granatum aqueous extract (1 ml), tincture (2 ml), decoction (1 ml), green tea aqueous extract (2 ml), tincture (1 ml) and decotion (2 ml) and 1 ml each of sacred basil oil, lemon grass oil, cinnamon bark oil, clove oil and cardamom oil were selected and added to pH adjusted , pasteurized and liquidized aloe gel juice (25 ml) for gel stabilization. The gel stabilization was thus done using the selected twenty six treatments in a Completely Randomised Design replicated five times and compared with 0.08 per cent sodium benzoate as control and stored for six months. Appearance, colour and odour of all forms of the herbal extracts reduced on storage while those treatments with aromatic oils showed lesser percentage reduction in these parameters. Total solids, amylase and lipase activity decreased on storage. The amino acid content was the highest for liquidized aloe gel juice added with aqueous, tincture and decoction of Achyranthes aspera (0.08 ppm).Vitamin A and C were highest for treatment with green tea leaf aqueous extract which decreased subsequently on storage. An increase in microbial load was observed for all the treatments with herbal extracts from first month of storage. But addition of 1 ml clove oil resulted in stabilization of liquidized aloe gel juice which could be stored upto five months without microbial contamination or affecting the nutritive and sensory parameters. Nutraceuticals were prepared using stabilized liquidized aloe gel juice containing clove oil blended with lemon juice, orange juice and honey in proportions of 50 : 50, 75 : 25 and 90 : 10 followed by pasteurization, flash cooling and stored for 6 months. Appearance, colour and vitamin C were significantly higher for Lemon juice (50 ml) + Liquidized aloe gel juice (50 ml) + 2 ml clove oil while odour, taste, overall acceptability, pH, TSS, carbohydrates and calories were significantly superior for Honey (50 ml) + Liquidized aloe gel juice (50 ml) + 2 ml clove oil. Growth of microbes could be detected from third month of storage for all the treatments. Aloe health drink with honey in the ratio 50 : 50 added with clove oil were selected as the accepted drink which could be preserved for two months without microbial contamination. The preparation of aloe herbal powder by solar drying, air drying, oven drying or freeze drying resulted in a sticky product which could not be reconstituted with distilled water for quality comparison with fresh gel, thus warranting further investigation. The present study revealed that liquidized aloe gel juice pasteurized and mixed with clove oil (4 per cent) is a low cost stabilization method which can be taken as a base material for the preparation of health drink. The nutraceutical with liquidized and stabilized aloe gel juice mixed with equal proportion of honey and preserved with clove oil is a palatable drink having higher calories which could be stored for two months. The dried aloe latex a byproduct produced by shade drying is superior with high aloin content and can also be used for the development of marketable product.
  • ThesisItemOpen Access
    Jackfruit (Artocarpus heterophyllus Lam.) as a potential source of bioactive compounds
    (Department of Post Harvest Technology, College of Agriculture, Vellayani, 2022) Viresh; KAU; Mini, C
    An investigation on “Jackfruit (Artocarpus heterophyllus Lam.) as a potential source of bioactive compounds” was carried out at Department of Post Harvest Technology, College of Agriculture, Vellayani from 2017-2020 with the objectives to standardize the extraction procedure for maximizing the antioxidant, anti-cancerous and anti-hyperglycemic properties of fruit wastes from varikka and koozha jackfruit types, phytochemical profiling, encapsulation and commercial exploitation of encapsulated extracts for fortification of fruit juice beverages. Experiments were carried out in four parts. Standardization of extraction procedure was carried out in the first part by evaluating the extracts for antioxidant, anti-hyperglycemic and anti-cancerous properties. Both varikka and koozha types were harvested at optimum maturity and were utilized at ripe stage independently. Except bulb, seed and peel without horny portion, all other parts were dried in cabinet (D1) and freeze (D2) driers, pulverized to fine powders and extracts were prepared using solvents viz., methanol at 90 (S1), 80 (S2), 50% (S3) and ethanol at 60 (S4), 80 % (S5) with solid to solvent ratios of 1:30 (R1), 1:40 (R2) and 1:50 (R3). Extract of freeze dried varikka samples using 60 per cent ethanol at 1:50 solid to solvent ratio (D2S4R3) had highest Total flavonoid content (TFC) (15.66 mg QE 100g-1 ), Total phenolic content (TPC) (156.10 mg GAE 100g), DPPH scavenging activity (69.29 per cent inhibition) and α-glucosidase inhibition activity (90.24 per cent). The same extract, D2S4R3 from koozha also exhibited highest TFC (15.88 mg QE 100 g -1 ), TPC (164.63 mg GAE 100g), DPPH scavenging activity (68.64 per cent inhibition) and α-glucosidase inhibition activity (92.28 per cent). Freeze dried varikka samples extracted using 90 per cent methanol at 1:50 solid solvent ratio (D2S1R3) recorded the highest (45.88 mg 100g-1 ) ascorbic acid content and freeze dried koozha samples extracted using 90% methanol at 1:40 solid solvent ratio (D2S1R2) had the highest ascorbic acid content of 47.37 mg 100g-1 . 310 Based on the efficiency and economics, extraction of freeze dried samples using 60% ethanol at 1:40 solid to solvent ratio (D2S4R2), similar samples using 60% ethanol at 1:50 solid to solvent ratio (D2S4R3 ) and cabinet dried samples with 60% ethanol at 1:50 solid to solvent ratio (D1S4R3) were selected as three superior extraction methods . The MTT system which is a simple, reproducible and accurate means of measuring the activity of living cells via mitochondrial dehydrogenases was utilized to assess the anti-cancerous properties of the selected three extracts viz., D2S4R2, D2S4R3 and D1S4R3 on HeLa cell lines with doxorubicin as control. Freeze dried varikka and koozha samples extracted in 60 percent ethanol at 1:50 solid to solvent ratio (D2S4R3) had the lowest IC50 value of 129.30 and 157.60 µg mL-1 respectively whereas the IC50 value for doxorubicin (positive control) was18.85 µg mL-1 . When the three superior extracts were subjected to phytochemical profiling in the second part of the experiment using LCMS/MS (Waters UPLC H class system fitted with TQD MS/MS system) for sugars, organic acids, phenolic acids and flavonoids, they were significantly influenced by extraction methods and jack fruit types. Fifteen sugars, ten organic acids, eighteen phenolic acids and fifteen flavonoids were fractionated and identified from the extracts. Extract of freeze dried sample using 60% ethanol in 1:50 solid to solvent ratio (D2S4R3) had highest sugars, organic acids, phenolic acids and flavonoid content. The major sugars identified were fructose, glucose, mannose, sucrose and sorbitol and; organic acids were citric acid, malic acid, shikimic acid, succinic and hydroxycitric acid; phenolic acids were ferulic acid, p-coumaric acid, caffeic acid, benzoic acid, o - coumaric acid; myricetin, catechin, naringenin, quercetin and epicatechin were the major flavonoids. The three superior extracts selected were encapsulated independently by spray and freeze drying in the third part of the study. Two maltodextrin (MD) levels (10 and 20 dextrose equivalence, DE), three carrier to extract ratio (1:10, 1:15 and 1:20), two inlet- outlet temperature of spray drier (180 - 80º C inlet - 311 outlet and 190 - 90º C inlet - outlet) were the process variables for spray encapsulation, whereas for freeze encapsulation, maltodextrin (MD) levels and carrier ratio were selected as process variables. The extract D2S4R3 from varikka and koozha, spray encapsulated using MD 20 DE at 1:20 carrier to extract ratio (Cr3) at inlet and outlet temperature of 180 and 80º C (T1) recorded highest TPC of 115.47 and 117.92 mg GAE 100 g-1 respectively. Varikka and koozha extracts spray encapsulated using MD 20 DE at 1:10 carrier to extract ratio at 190 - 90ºC inlet - outlet temperature (C2Cr1T2) produced encapsulate with highest per cent recovery (83.77 and 82.09 % respectively). Lowest moisture content of 2.46 and 2.55 per cent were recorded by the extracts spray encapsulated using 10 DE MD at 1:20 carrier to extract ratio at inlet - outlet temperature of 190 - 90º C (C1Cr3T2) from varikka and koozha respectively. Based on the superior physico-chemical properties, spray encapsulate of freeze dried varikka and koozha extracts prepared using 60 per cent ethanol at 1:50 solid to solvent ratio (D2S4R3), using 20 DE maltodextrin at 1:20 carrier to extract ratio with 180 - 80°C inlet - outlet temperature (C2T1Cr3), was selected for Part 4 of the experiment. D2S4R3 extract from varikka and koozha, when freeze encapsulated with MD 20 DE at 1:20 carrier to extract ratio had highest TFC of 11.62 and 11.75 mg QE 100 g-1 respectively. Koozha extract, freeze encapsulated with MD 20 DE at 1:20 carrier to extract ratio had highest TPC of 134.38 mg GAE 100 g-1 DPPH scavenging activity of varikka and koozha extracts were highest when freeze encapsulated with MD 20 DE at 1:20 carrier to extract ratio (per cent inhibition of 71.66 and 77.48 respectively). Ascorbic acid content and per cent recovery of encapsulates were not influenced by levels of MD or carrier to extract ratio. The extracts freeze encapsulated with MD 10 DE at 1:10 carrier to extract ratio had lowest moisture content of 2.22 and 2.51% respectively. Based on the superior physico-chemical properties, freeze encapsulate of the freeze dried varikka and koozha extract prepared with 60 per cent ethanol at 1:50 solid to solvent ratio (D2S4R3), using 20 DE maltodextrin at 1:20 carrier to extract ratio, was selected for part 4 of the experiment. 312 The encapsulated extracts were utilized @ 0.01 to 0.1 per cent for development of fortified mango RTS beverages as per FSSAI standards and compared with commercial fortified beverage in the fourth part of study. Mango RTS beverage enriched with the freeze encapsulate of the extracts @ 0.05 per cent was found to be superior with respect to Total Soluble Solids, total phenolic content, antioxidant activity and total sugar content and these were on par with the beverage enriched with spray encapsulates @ 0.05 per cent and commercial fortified beverages. The highest TPC of 41.05 and 41.12 mg GAE 100 ml-1 were recorded in mango RTS beverage enriched with 0.05 per cent freeze encapsulate of varikka and koozha respectively which were found to be on par with the mango RTS beverage enriched with 0.05 per cent spray encapsulate. The highest scavenging activity (76.29 per cent inhibition) was noticed in RTS beverage enriched with 0.05 per cent freeze encapsulate, followed by the beverage mixed with 0.05 per cent spray encapsulate (73.21%). The lowest scavenging activity (55.19 per cent inhibition) was observed in control sample. From the study, it was proved that the extracts prepared from combined inedible parts of both varikka and koozha jackfruit types are potential source for bioactive compounds. Extraction of freeze dried varikka and koozha types using 60 per cent ethanol at 1:50 solid to solvent ratio was standardized as the best extraction method for retention of phytochemicals, antioxidant activity, antihyperglycemic and anti-cancerous properties. Phytochemical profiling of the superior extracts revealed the presence of 15 sugars, 10 organic acids, 18 phenolic acids and 15 flavonoids. Extracts from varikka and koozha spray encapsulated using 20 DE maltodextrin at 1:20 carrier to extract ratio with 180 - 80°C inlet - outlet temperature and freeze encapsulated by using 20 DE maltodextrin at 1:20 carrier to extract ratio retained maximum phytochemicals and antioxidant properties. These spray and freeze encapsulates could be utilized for fortifying mango RTS beverage @ 50 mg 100 ml-1 without affecting the sensory parameters with an enhanced antioxidant activity of 13-16% compared to commercial fortified mango RTS beverage.
  • ThesisItemOpen Access
    Characterization and evaluation of plant growth promoting rhizobacteria from rice soils of Wayanad
    (Department of Agricultural Microbiology, College of Agriculture, Vellanikkara, 2021) Wickramasinghe, W R K D W K V; KAU; Girija, D
    Plant growth promoting rhizobacteria (PGPR) are a group of bacteria that colonize the plant rhizosphere and enhance the growth and yield of plants. The present investigation entitled “Characterization and evaluation of plant growth promoting rhizobacteria from rice soils of Wayanad” was undertaken at the Department of Agricultural Microbiology” during the year 2018-2020, with the objective of isolation, characterization and evaluation of plant growth promoting rhizobacteria from rice soils of Wayanad and formulation of a consortium to improve the growth and yield of rice. Isolation of rhizobacteria with potential plant growth promoting (PGP) activities was attempted from rice rhizosphere soils collected from ten locations in Wayanad district of Kerala. Selective media were used for the isolation of PGPRs including nitrogen fixers, solubilizers of phosphate, K and Zn and fluorescent pseudomonads. A total of 149 isolates obtained on different media were subjected to preliminary screening for growth on selective media, which yielded 32 N-fixers, 16 phosphate solubilizers, four K solubilizers, six Zn solubilizers and two fluorescent pseudomonads. These isolates were evaluated in vitro for PGP activities (production of IAA, NH3, HCN and siderophore) and antagonistic activities against R. solani and X. oryzae. Twenty promising isolates were selected based on their functional efficiency for further characterization using cultural, morphological, biochemical and molecular methods. Four isolates were found to be Gram-positive rods and sixteen isolates were Gram-negative short rods. Eighteen isolates were identified based 16S rRNA gene sequencing and the sequences of all the eighteen isolates deposited in the GenBank of the NCBI. Phylogenetic analysis using MEGA 7 software showed two major clusters and several sub-clusters. A few of the native isolates stood out distinctly from the available accessions in the database, showing that they are genetically diverse. Based on the efficiency of N fixation, P, K and Zn solubilization and other PGP activities, isolates were ranked. Based on ranking, three N-fixers (Bacillus sp. AkNF3, Pseudomonas sp. PkNF4 and Pseudomonas putida KgNF1), three phosphate solubilizers (Bacillus megaterium PkPS1, Acinetobacter schindleri AkPS4 and Achromobacter sp. AvPS1), two K-solubilizers (Microbacterium sp. MvKS1 and Acinetobacter calcoaceticus MvKS3) and two zinc solubilizers (Achromobacter marplatensis ThZnS2 and Cytobacillus kochii PkZnS3) were selected for consortial formulation. Compatibility of ten promising isolates was tested by cross streaking and dual culture methods. Three PGPR based consortia (Consortium 1, 2 and 3) were formulated, each consisting of 5 native isolates (two N-fixers, one each of phosphate, K and Zn solubilizers). These consortia were evaluated in pot culture experiment, along with KAU commercial formulation (PGPR mix-1), at RARS, Ambalavayal, with rice (variety Valichoori) as the test crop. PGPR application was combined with two levels (50% and 75%) of recommended dosage of inorganic fertilizers (RDF). Population of total bacteria, N fixers, P, K and Zn solubilizers was higher in combined application of biofertilizer with inorganic fertilizers than uninoculated treatments and this was indicative of better colonization of native PGPRs in the rice rhizosphere. Growth and yield parameters indicated that application of PGPR consortium with 75% RDF was statistically on par with PoP (KAU) and 100% RDF. Results suggested that 25% inorganic N, P and K can be replaced by using native PGPR consortium without affecting plant growth, yield, plant nutrient content and soil nutrient content. Considering the above parameters, two best consortia (Consortium 2 and Consortium 3) were selected for further field evaluation. Field evaluation was carried out to assess the efficiency of two selected native PGPR consortia at RARS, Ambalavayal. Five treatments included were, consortium 2 + 75% RDF, consortium 3 + 75% RDF, reference biofertilizer PGPR mix-1 + 75% RDF, 100% RDF and farmer’s practice (farm yard manure 5t ha-1 ). Results suggested that root colonization of total bacteria, N fixers, P, K and Zn solubilizers was higher in all treatments of combined application of biofertilizers with 75% inorganic fertilizer than 100% RDF alone. Growth and yield parameters suggested that combined application of Consortium 2 with 75 % RDF was statistically on par with 100% RDF. Therefore, it can be concluded native PGPR strains in consortium 2 (Bacillus sp. strain AkNF3, Pseudomonas putida strain KgNF1, Bacillus megaterium strain PkPS1, Acinetobacter calcoaceticus strain MvKS3 and Cytobacillus kochii PkZnS3) successfully colonized the rice rhizosphere, increased nutrient availability to the plants and produced higher yield. The results also emphasized on the importance of exploiting native, location specific microorganisms as biofertilizer consortium, rather than a common consortium for the entire State. Native PGPR based consortia 2 reduced the 25% of inorganic fertilizer (N, P and K) without affecting the growth and yield of rice. This would be more cost effective and ecofriendly when compared with the use of chemical fertilizers alone. Further multi-locational field trials are required to validate the results before commercialization of this consortium, as a biofertilizer.
  • ThesisItemOpen Access
    Fertigation studies in Papaya (Carica papaya L.)
    (Department of Fruit Science, College of Agriculture, Vellayani, 2021) Karishma, Sebastian; KAU; Bindu, B
    The investigation entitled “Fertigation studies in papaya (Carica papaya L.)” was carried out in Instructional Farm, College of Agriculture, Vellayani during the period 2018 – 2020 with the objectives to standardize the nutrient level for yield improvement through fertigation and foliar nutrition in papaya variety Surya and to study the postharvest management practices for extending the shelf life of papaya fruits. The experiment was undertaken in two parts. In part I, standardization of nutrient level for fertigation and foliar nutrition was carried out in RBD with 14 treatments replicated thrice. A combination of four fertigation doses of 75 %, 100 %, 125 % and 150 % RDF of N (304.89, 406.52, 508.15 and 609.78 g urea plant⁻¹ year⁻¹ respectively based on soil test data in 76 fertigation) and K (426.25, 568.33, 710.42 and 852.50 g MOP plant⁻¹ year⁻¹ respectively based on soil test data in 76 fertigation) and three foliar sprays (1.0 % 19:19:19 at bimonthly interval starting from 4 MAP to 16 MAP, 0.5% ZnSO4 + 0.3% borax at 4 th, 8th, 12th and 16th MAP and water spray at bimonthly interval starting from 4 MAP to 16 MAP) were compared with soil application of recommended dose of NPK (187:170:341 g NPK plant-1 year-1 based on soil test data) (control 1) and 187:170:341 g NPK plant-1 year-1 based on soil test data as organic manures as combination of FYM, poultry manure and vermicompost in the ratio of 2:1:1 (control 2). In control 2, additional requirement of P and K were met through the application of rock phosphate and potassium sulphate respectively. Organic manure (15 kg FYM plant-1 ) was given uniformly to all treatments as basal. Lime and rock phosphate (500g and 850g respectively based on soil test data) was applied uniformly for all treatments as basal except controls. Urea and Muriate of Potash (MOP) were used as fertilizer sources for fertigation and applied weekly from 1 MAP to 20 MAP. Application of different levels of fertigation and different foliar sprays had significant effect on growth, yield and quality of papaya. Growth parameters viz., plant height, stem girth and number of leaves were significantly higher in plants receiving 100 % RD of N and K through fertigation and foliar sprays of 1.0 % 19:19:19 (T4) at bimonthly interval starting from 6 MAP to 16 MAP. T4 also recorded highest leaf area index at 6, 12, 18 MAP and at final harvest, flowering at the shortest height, highest number of female plants and highest fruit set (86.27 %). However, application of 100 % RD of N and K through fertigation and foliar sprays of 0.5 % ZnSO4 and 0.3 % borax at 4 th, 8th, 12th and 16th MAP (T5) initiated earliness in flowering (142.67 days) and harvest (275.00 days). Treatments T4 and T5 were on par in fruit length, fruit girth, fruit volume, pulp percentage, flesh thickness and yield contributing characters like fruit weight, number of fruits per plant and yield per plant (38.30 kg plant⁻1 and 37.60 kg plant⁻1 respectively). Fruit quality parameters viz., TSS, carotenoids, ascorbic acid, total sugar, reducing sugar and non reducing sugar were found highest in T5. Fruits from T5 also registered longest shelf life (5.78 days) and highest mean sensory score for all parameters. Index leaf analysis at 6 MAP revealed highest nitrogen and potassium content of leaf in T10 (150 % RD of N and K through fertigation and foliar sprays of 1.0 % 19:19:19). Calcium, magnesium and sulphur content of leaves were highest in T5, whereas boron and zinc content were highest in T8 (125 % RD of N and K through fertigation and foliar sprays of 0.5 % ZnSO4 and 0.3 % borax). Highest nitrogen and potassium of fruits were observed in T12 (150 % RD of N and K through fertigation with water spray). Highest nitrogen content in soil was noticed in T11 (150 % RD of N and K through fertigation and foliar sprays of 0.5 % ZnSO4 and 0.3 % borax) and T10 witnessed highest potassium content. T4 and T5 were at par regarding B : C ratio (2.58 and 2.54 respectively). In part II of the investigation, postharvest management for extending shelf life of papaya was carried out with nine treatments replicated thrice. Different postharvest treatments given were precooling - hydro cooling (S1), surface sanitization with 150 ppm sodium hypochlorite (S2), external coating with 1% chitosan (S3), precooling followed by external coating with 1% chitosan (S4), packaging with ethylene scrubber 8% KMnO₄ (S5), precooling followed by packaging with ethylene scrubber 8% KMnO₄ (S6), precooling followed by external coating with 1% chitosan and packaging with ethylene scrubber 8% KMnO4 (S₇), hot water treatment followed by waxing with 6% carnauba wax and packaging with ethylene scrubber 8% KMnO₄ (S8) and control (S9). Papaya variety Surya was raised at Instructional Farm, Vellayani and fruits at fully mature green stage were harvested, subjected to different postharvest treatments and packaging was done in CFB boxes and stored under ambient conditions till the end of shelf life. Papaya fruits subjected to precooling followed by external coating with 1% chitosan and packaging with ethylene scrubber KMnO₄ (S7) recorded the longest shelf life of 9.67 days, which was at par with S8 (hot water treatment followed by waxing with 6% carnauba wax and packaging with ethylene scrubber KMnO₄). Physiological loss in weight, ion leakage, percentage disease index, bacterial and fungal count were significantly lowest in S7 and S8 after three days of storage. These treatments also recorded maximum total carotenoids, total soluble solids, total sugar, reducing sugar and minimum acidity after nine days of storage which indicated extended shelf life. Highest mean rank score for sensory attributes were also recorded in treatments S7 and S8 after nine days of storage. In conclusion, application of 100 % recommended dose of N and K (406.52 g urea plant⁻¹ year⁻¹ and 568.33 g plant⁻¹ year⁻¹ respectively) through weekly fertigation from one to 20 months after planting and foliar sprays of 0.5 % ZnSO4 + 0.3 % Borax at 4 th, 8th, 12th and 16th MAP, along with basal application of 850g rock phosphate and 15 kg FYM resulted in increased growth, yield and quality characters of papaya variety Surya with highest B: C ratio. Fruits at fully mature green stage when subjected to precooling followed by external coating with 1% chitosan and packaging with ethylene scrubber 8% KMnO₄ in CFB boxes exhibited a shelf life of 9.67 days in storage under ambient condition in papaya variety Surya.