Loading...
Thumbnail Image

Kerala Agricultural University, Thrissur

The history of agricultural education in Kerala can be traced back to the year 1896 when a scheme was evolved in the erstwhile Travancore State to train a few young men in scientific agriculture at the Demonstration Farm, Karamana, Thiruvananthapuram, presently, the Cropping Systems Research Centre under Kerala Agricultural University. Agriculture was introduced as an optional subject in the middle school classes in the State in 1922 when an Agricultural Middle School was started at Aluva, Ernakulam District. The popularity and usefulness of this school led to the starting of similar institutions at Kottarakkara and Konni in 1928 and 1931 respectively. Agriculture was later introduced as an optional subject for Intermediate Course in 1953. In 1955, the erstwhile Government of Travancore-Cochin started the Agricultural College and Research Institute at Vellayani, Thiruvananthapuram and the College of Veterinary and Animal Sciences at Mannuthy, Thrissur for imparting higher education in agricultural and veterinary sciences, respectively. These institutions were brought under the direct administrative control of the Department of Agriculture and the Department of Animal Husbandry, respectively. With the formation of Kerala State in 1956, these two colleges were affiliated to the University of Kerala. The post-graduate programmes leading to M.Sc. (Ag), M.V.Sc. and Ph.D. degrees were started in 1961, 1962 and 1965 respectively. On the recommendation of the Second National Education Commission (1964-66) headed by Dr. D.S. Kothari, the then Chairman of the University Grants Commission, one Agricultural University in each State was established. The State Agricultural Universities (SAUs) were established in India as an integral part of the National Agricultural Research System to give the much needed impetus to Agriculture Education and Research in the Country. As a result the Kerala Agricultural University (KAU) was established on 24th February 1971 by virtue of the Act 33 of 1971 and started functioning on 1st February 1972. The Kerala Agricultural University is the 15th in the series of the SAUs. In accordance with the provisions of KAU Act of 1971, the Agricultural College and Research Institute at Vellayani, and the College of Veterinary and Animal Sciences, Mannuthy, were brought under the Kerala Agricultural University. In addition, twenty one agricultural and animal husbandry research stations were also transferred to the KAU for taking up research and extension programmes on various crops, animals, birds, etc. During 2011, Kerala Agricultural University was trifurcated into Kerala Veterinary and Animal Sciences University (KVASU), Kerala University of Fisheries and Ocean Studies (KUFOS) and Kerala Agricultural University (KAU). Now the University has seven colleges (four Agriculture, one Agricultural Engineering, one Forestry, one Co-operation Banking & Management), six RARSs, seven KVKs, 15 Research Stations and 16 Research and Extension Units under the faculties of Agriculture, Agricultural Engineering and Forestry. In addition, one Academy on Climate Change Adaptation and one Institute of Agricultural Technology offering M.Sc. (Integrated) Climate Change Adaptation and Diploma in Agricultural Sciences respectively are also functioning in Kerala Agricultural University.

Browse

Search Results

Now showing 1 - 9 of 391
  • ThesisItemOpen Access
    Study on marketing management of Sitaram ayurveda pharmacy Ltd. for Narasimham oil
    (College of Co-operation Banking and Management, Vellanikkara, 2017) Bhagyasree, K G; KAU; Smitha, Baby
    Marketing management is the organizational discipline which focuses on the practical application of marketing orientation, techniques and methods inside enterprises and organizations and on the management of a firm's marketing resources and activities. Marketing management employs tools from economics and competitive strategy to analyze the industry context in which the firm operates. The scope of a business' marketing management depends on the size of the business and the industry in which the business operates. Effective marketing management will use a company's resources to increase its customer base, improve customer opinions of the company's products and services, and increase the company's perceived value. The project entitled “A study on marketing management of Sitaram Ayurveda Pharmacy Ltd. for Narasimham oil” were undertaken with the objectives vii. To understand the marketing management practices followed by Sitaram Ayurveda Pharmacy Ltd for the promotion of Sitaram Narasimham oil. viii. To evaluate consumers, retailers and dealers perception towards the maketing of Sitaram Narasimham oil. ix. To suggest improved marketing strategies for Sitaram Narasimham oil. The sample size of the study was 60 consumers, 8 distributors and 15 retailres of Sitaram Narasimham oil , in Thrissur Corporation. Consumers were selected by using convenience sampling method. The study was based on primary data and secondary data, the primary data were collected from the sample respondents through personal interview. The collected data were analyzed using percentage and ranking index method. In order to keep the company vibrant and responsive to the needs of the customers, it is vital to regularly monitor the level of consumer satisfaction and marketing management practices.
  • ThesisItemOpen Access
    Morphological variations of root knot nematode in vegetables and banana
    (Department of Agricultural Entomology, College of Agriculture, Vellayani, 2017) Chinchu, P Babu; KAU; Narayana, R
    The study entitled “Morphological variations of root knot nematode in vegetables and banana” was conducted at College of Agriculture, Vellayani during 2015-17 with the objective to study the morphological and morphometric variations of root-knot nematode in brinjal, okra, tomato and banana in Kerala. Morphological and morphometrical studies of females, perineal pattern, second stage juveniles and males of root knot nematodes collected from Dhanuvachapuram, Kattakada and Vellayani of Thiruvananthapuram district; Balagram, Pampadumpara and Thovalappady of Idukki district; Chazhoor, Thalikulam and Thaniyam of Thrissur district infecting brinjal, okra, tomato and banana were done and the data was analysed to identify the species. M.incognita (Kofoid & White, 1919) Chitwood, 1949, M. javanica (Treub, 1885) Chitwood, 1949, M. arenaria (Neal, 1889) Chitwood, 1949 and M. chitwoodi Golden, O'Bannon, Santo & Finley 1980 were identified from brinjal, okra, tomato and banana in Thiruvananthapuram, Idukki and Thrissur districts of Kerala. The study indicated M. incognita as the major species of root knot nematode in Thiruvananthapuram district (91.66%) with highest percentage of occurrence in brinjal and tomato (27.77). In Idukki district, the major species of root knot nematode was M. javanica (66.66%) with highest percentage of occurrence from brinjal and banana (33.33). In Thrissur district, M. arenaria was found to be the major species (66.66%) with highest percentage of occurrence in okra (37.5). M. incognita was found to be the major species in brinjal (55.55%), okra (44.44%), tomato (55.55%) and banana (44.44%) in Thiruvananthapuram, Idukki and Thrissur districts. The extent of parthenogenesis of root knot nematode was found to be very high (97.22%) in these populations. Intraspecific morphological variations were observed within M. incognita, M. javanica and M. arenaria with respect to shape of females, length and position of neck, perineal pattern morphology, tail characters including rectum dilation. Interpopulation comparison of mature females, perineal pattern and second stage juveniles of M. incognita showed that the characters length, width, neck length, stylet length, LMB, WMB and ratio a of females, LVS, AVS, ATT and IPD of perineal pattern and body length, stylet length, H-MB, ABW, tail length, ratio c and c’ were recorded as stable characters. Interpopulation comparison of mature females, perineal pattern and second stage juveniles of M. javanica showed that all the characters of females, perineal pattern and second stage juveniles were stable characters and in M. arenaria, the characters like body length, width, neck length, stylet length, LMB and WMB of females, LVS, AVS, ATT and IPD of perineal pattern and length, stylet length, H-MB, ABW and tail length were recorded as stable characters and found useful in characterizing species. Intraspecific morphological and morphometric variations of M. incognita, M. javanica, M. arenaria were recorded from four host plants in three districts in Kerala. M. arenaria and M. javanica showed high variability between the populations compared to M. incognita in Kerala. The study indicated that M. incognita, M. javanica and M. arenaria were the major species infesting vegetables and banana in Kerala. Among the sampled populations, M. hapla was not identified which shows that M. hapla is not common in Kerala conditions. The study recorded the first report of species having morphological and morphometrical characters similar to M. chitwoodi from okra in Thiruvananthapuram which opens way to molecular studies in future.
  • ThesisItemOpen Access
    Standardisation of spacing and nutrient levels for fodder rice bean [Vigna umbellata (Thunb.)].
    (Department of Agronomy, College of Agriculture, Vellayani, 2018) Ajmal Fayique, C; KAU; Usha C, Thomas
    The study entitled “Standardization of spacing and nutrient levels for fodder rice bean [Vigna umbellata (Thunb.)]” was conducted at College of Agriculture, Vellayani, Kerala during Kharif 2017 to standardize the spacing and nutrient requirement of fodder rice bean and to study its impact on growth, yield and quality of the crop. The experiment was laid out in Randomised Block Design (33 confounded factorial) with three replications.The treatments consisted of three spacings (s1 - 30 cm x 10 cm, s2 - 30 cm x 20 cm and s3 - 30 cm x 30 cm), three levels of nitrogen (n0 - 0 kg ha-1, n1 - 20 kg ha-1 and n2 - 30 kg ha-1) and three levels of phosphorous (p0 - 0 kg P2O5 ha-1, p1 - 20 kg P2O5 ha-1 and p2 - 40 kg P2O5 ha-1) . FYM @ 5 t ha-1 and K2O @ 30 kg ha-1 were applied uniformly to all treatments as basal. The treatment s1 resulted in the highest plant height at 30 DAS and leaf: stem ratio at harvest. Application of N @ 20 kg ha-1 registered the highest plant height and was on par with 30 kg N (n2) while leaf stem ratio was the highest at n2. Levels of P had no significant impact on growth characters. The treatment combination s2n2p1 produced the tallest plants (173.17 cm) at harvest and treatments s1n0p1 and s1n2p2 recorded the highest leaf: stem ratio (0.82) but were on par with s1n0p0, s2n0p0, s n0p2, s1n1p0, s2n0p2 and s3n0p1. At 30 DAS, s1 produced the highest LAI (2.27) while at harvest, s2 was found superior. The highest NAR was observed at s1 and was on par with s3. Closer spacing (s1) enhanced the CGR at 30 DAS and harvest. Application of 30 kg N ha-1 (n2) enhanced LAI at both stages. At 30 DAS and at harvest, higher NAR were observed at n1 and n2. At 30 DAS, n2 and p1 registered the highest chlorophyll contents. The treatment s1 n2 p1 (30 cm x 10 cm spacing + 30 kg N ha-1 + 20 kg P2O5 ha-1) resulted in the highest LAI, CGR and chlorophyll content at 30 DAS. Spacing and N levels had significant impact on green fodder yield (GFY) and dry fodder yield (DFY). The highest GFY (12.95 t ha-1) and DFY (2.59 t ha-1) were produced at s1 (30 cm x 10 cm) and was on par with s2. The highest GFY (13.66 t ha-1) and DFY (2.73 t ha-1) were produced at n2 (30 kg N ha-1) and was on par with n1. The S x N x P interaction s1 n2 p1 (30 cm x 10 cm + 30 kg N ha-1 + 20 kg P2O5 ha-1) recorded highest GFY (17.29 t ha-1) and DFY (3.46 t ha-1). The different spacing had no impact on crude protein (CP) but the lowest crude fibre (CF) was observed at s1. Application of 30 kg N ha-1 (n2) resulted in the highest CP content and the lowest CF content was estimated at 0 kg N ha-1. Among P levels, p2 recorded the highest CP (17.69%) and was on par with p1. The lowest CF (16.43 %) was observed at s2n0p1 (30 cm x 20 cm spacing + 20 kg P205 ha-1) and was on par with s1n0p0, s1n0p1, s1n2p0, s2n0p0, s2n0p2, s3n0p0 and s3n0p1. No variation in N uptake was observed due to treatments. Uptake of P varied with N levels only and n1 and n2 recorded the highest P uptake. Spacing and P levels influenced K uptake by the crop and the highest uptake was observed at s1 and p2 but p2 was on par with p1. The three factor interaction s1n2p1 registered the highest P and K uptake. However, it was on par with s1n1p2, s1n1p0, s2n1p1 and s3n0p2 in P uptake and with s1n2p2 in K uptake. Increasing N levels increased pH and EC of soil after the experiment. Soil available N after the experiment was the highest at s3 (on par with s2) and n2 (on par with n1). At wider spacing, application of N enhanced the availability of N in the soil after the experiment. Available P in the soil varied with S x P interaction but all treatment combinations were on par except s2p0 and s3p2. The highest soil available K was observed at n0 among N levels and at p1 among P levels. The interactions S x N, S x P and N x P significantly influenced available K in the soil. Economic analysis revealed the highest net income (₹ 35762) and BC ratio (3.22) at s1n2p1 (30 cm x 10 cm spacing + 30 kg N ha-1 + 20 kg P2O5 ha-1). From the study, it can be concluded that fodder rice bean can be profitably cultivated at a spacing of 30 cm x 10 cm with application of 30 kg N ha -1 in two splits at 15 and 30 DAS and basal application of 20 kg P2O5 ha-1, 5 t ha-1 of FYM and 30 kg K2O ha-1.
  • ThesisItemOpen Access
    QTL mapping for yield traits in vegetable cowpea
    (Centre for Plant Biotechnology and Molecular Biology, College of Horticulture, Vellanikkara, 2017) Ashwin Varghese, V; KAU; Deepu, Mathew
    Cowpea [Vigna unguiculata (L.) Walp.] is one of the most cultivated pulse crops in the semi-arid tropics of Asia, Africa, Southern Europe, and other parts of the world. It is used for both vegetable and fodder purpose. In India, kharif crop of vegetable cowpea is cultivated in an estimated area of 0.5 million hectares in states like Kerala, Karnataka, Tamil Nadu and Madhya Pradesh. Studies aimed at increased yield among crops were always challenged by the quantitative nature of traits. These quantitative traits are generally governed by multiple genes present in regions of the genome called quantitative trait loci (QTL). With the advent of molecular markers it is possible to localize the QTL with the help of linked markers, a process now widely known as QTL mapping. QTL mapping depicts the relative positioning of different markers on the chromosomes and their linkage to a specific trait. In cowpea, even though there has been few mapping efforts for traits such as resistance to Thrips tabaci and Frankliniella schultzei, flowering time, pod length and seed weight, an elaborate QTL map for yield and related traits is missing. Hence, the study “QTL mapping for yield traits in vegetable cowpea” was undertaken with the objective of mapping the SSR markers and identifying the quantitative trait loci for yield components in the genome of vegetable cowpea at the Centre for Plant Biotechnology and Molecular Biology (CPBMB), College of Horticulture, during February 2016 to June 2017. F3 plants maintained at CPBMB, derived from the cross of Sharika which is a pole type, long poded, high yielding but anthracnose and cowpea mosaic virus susceptible cultivar with Kanakamony which is a semi-trailing, medium-long poded, low yielding, anthracnose immune and cow pea mosaic virus resistant cultivar, were used to raise the F4 mapping population. Morphological observation for traits pod length, individual pod weight (IPW), pod number, days taken for first flowering (DTFF), total dry pod yield (TDPY), grains per pod, branch number, root length, plant height, plant weight, and response to anthracnose and cowpea mosaic virus diseases were recorded. High quality DNA was isolated from the parents and mapping population using the protocol standardized in this study. One hundred SSR primer pairs reported in cowpea were screened among the parental DNA for polymorphism. Thirty polymorphic primer sets were carried forward to genotype the F4 mapping population. The morphological and genotypic data were used to construct a linkage map using software ICIMapping. Two linkage groups, one having eight SSR markers distributed across 637 cM and another one having five SSR markers distributed across 271 cM were obtained. Two approaches, Single Marker Analysis (SMA) and Inclusive Composite Interval Mapping (ICIM) otherwise called Additive Linkage Mapping were followed for QTL mapping. LOD value threshold of 3.0 was used to determine the significance of QTL and linked markers. Multiple QTL hotspots were observed for different traits under study. An anchored marker, CLM0083 has been identified which was significantly linked to traits individual pod weight and total dry pod yield. The region between 25 cM to 125 cM on linkage group 1 had QTL hotspots harboring genes governing traits DTFF, TDPY, root length, plant length and plant height. This entire region was bracketed by two markers, CLM0244 at 24.25 cM and CLM0177 at 126.86 cM with an anchored marker CLM0008. This marker combination could be potentially used in marker assisted selection for the traits DTFF, TDPY, root length, plant length and plant height. Fine mapping of the QTL for these traits with large number of markers would provide more insights into the genes and hot spots involved in the yield contributing traits in cowpea.
  • ThesisItemOpen Access
    Evaluation of cowpea [Vigna unguiculata (L.) Walp.] genotypes for yield and resistance to pulse beetle [Callosobruchus spp.]
    (Department of Plant Breeding and Genetics, College of Agriculture, Vellayani, 2017) Thouseem, N; KAU; Beena, Thomas
    The present study entitled “Evaluation of cowpea [Vigna unguiculata (L.) Walp.] genotypes for yield and resistance to pulse beetle [Callosobruchus spp.]” was carried out at farmer’s field, Kayamkulam during 2015-2017, with an objective to evaluate cowpea genotypes for yield and resistance to pulse beetle. The study was conducted in two experiments. In experiment-I, yield and resistance to pulse beetle was evaluated in a Randomised Block Design (RBD) with three replications using 30 genotypes collected from different places. Experiment-II was to study the seed morphological and biochemical factors associated with resistance to pulse beetle in five relatively resistant genotypes and five relatively susceptible ones which were identified through experiment-I. The field experiment revealed that the genotype T1 (Ambalappuzha local) showed the highest mean values for days to 50 per cent flowering, length of main stem, pod weight, pod length, number of seeds pod-1, 100 seed weight and crop duration. The maximum yield plant-1 (32.91g) was obtained for the genotype T29 (Sreya) followed byT14 (Alathur local) and T7 (Dhavengarae local), whereas the minimum yield plant-1 (11.07g) was for the genotype T13 (Hridya). Thirteen genotypes were found to be infested under field condition and only very low seed damage via carry over population was noticed. The characters studied were found to be significant for all the genotypes evaluated. The pod weight exhibited the highest GCV (47.73%) and PCV (52.12%). Heritability was high for all the characters except number of primary branches plant-1, number of pods plant-1 and seed yield plant-1 which possessed moderate heritability. GA (% mean) was high for all the characters except crop duration. The association analysis revealed highly significant positive correlation for 100 seed weight, days to 50 per cent flowering, crop duration, number of seeds pod-1, pod girth, and pod length with seed yield both at genotypic and phenotypic levels. The path analysis revealed that 100 seed weight, number of pods plant-1 and number of seeds pod-1 had the maximum positive direct effect on seed yield plant-1. In no choice confinement test under experiment-I, there were significant differences among the genotypes in terms of oviposition, percentage seed damage and percentage seed weight loss. T2 (Kayamkulam local-1) had the least egg load while more eggs were laid on seeds of T29 (Sreya) and T1 (Ambalappuzha local). The highest percentage seed damage and the highest percentage weight loss were recorded for T13 (Hridya) and T27 (Bijapur local) respectively. The lowest percentage seed damage and percentage seed weight loss were observed for the genotype T7 (Dhavengarae local). In the study of seed morphological and biochemical factors associated with resistance under experiment-II, it was found that seed coat texture, seed coat colour and protein content of seeds were found to have no influence on resistance to pulse beetle. However, total phenol content of seed was having significant negative correlation with percentage seed weight loss. An index score was worked out to find out genotypes with good yield and relative resistance to pulse beetle. It was observed that the genotype T7 (Dhavengarae local) had the highest index score followed by T14 (Alathur local). The present study revealed that the genotype T7 (Dhavengarae local) was found to be a good yielder with relative resistance to pulse beetle followed by the genotype T14 (Alathur local). Hence these genotypes can be recommended for future breeding programmes.
  • ThesisItemOpen Access
    Genetic divergence in kiriyat (andrographis paniculata nees)
    (Department of Plant Breeding and Genetics, College of Agriculture, Vellayani, 2017) Prathibha, S S; KAU; Arya, K
    The study entitled “Genetic divergence in kiriyat (Andrographis paniculata Nees)." was under taken at the College of Agriculture, Vellayani during 2015-17 with the objective to assess the genetic variability present in the natural ecotypes of kiriyat from different regions and identifying the superior ecotypes in terms of herbage yield and quality. Thirty accessions of kiriyat were collected from different parts of India and were evaluated for genetic variability with respect to herbage yield (fresh weight) and quality in terms of total extractives (%). Accession A10 from Aruvipuram showed highest mean values for seedling height (15 DAT), number of primary branches, herbage yield (137.25 g), yield plant-1 (dry herbage yield plant-1) (37.79 g) and total extractives (13.6 %) followed by the A14 (Kottakkal) and A7( Kottakkunnu). The accessions A14 (Kottakkal) and A15 (Nilambur) showed highest mean values for number of secondary branches and number of leaves seedlings-1 (15 DAT) respectively. Mean value for days to 50 percent flowering was least for accession A10. The lowest yield was exhibited by A3 (Coimbatore) accession. Average duration of the plants exhibited ranged between 182.67 and 213 days. The earliest accession was A10 (Aruvipuram) with an average duration of 182.67 days. Seedling height, number of leaves seedling-1, number of secondary branches, leaf length and width, stem girth, leaf/stem ratio, plant height, herbage yield, yield plant-1 and total extractives exhibited high coefficient of variations. Heritability was high for all the characters except number of leaves seedling-1 (15 DAT), herbage yield and yield plant-1 which possessed moderate heritability. GA (% mean) was high for all the characters except plant duration. The association analysis revealed a significant correlation among almost all characters and also with yield. Path coefficient analysis revealed that plant height, herbage yield, number of primary and secondary branches had high positive direct effect on yield. The genetic divergence was studied using Mahanalobis D2 statistics and accessions were grouped into seven clusters. Cluster VII accommodated maximum number of accessions (13) followed by cluster VI (5), cluster V (4), cluster IV (3), clusters III and II (2) and cluster I (1). Highest inter cluster distance was between clusters VI and VII while intra cluster distance was highest for cluster IV. The study revealed that variability existed among the different ecotypes of kiriyat and the ecotype collected from Aruvipuram (A10) was found to be superior in terms of herbage yield and quality followed by ecotypes from Kottakkal (A14) and Kottakkunnu (A
  • ThesisItemOpen Access
    Evaluation of miRNA prediction tools and in silico analysis of micro and long non coding RNAs in sweet potato
    (Department of Plant Biotechnology, College of Agriculture, Vellayani, 2018) Aswathy, M B; KAU; Sreekumar, J
    The study entitled “Evaluation of miRNA prediction tools and in silico analysis of micro and long non coding RNAs in sweet potato (Ipomoea batatas L.)” was conducted at the ICAR-CTCRI, Sreekariyam. The objectives of the study is to compare different miRNA and target prediction tools and in silico analysis of the miRNAs and lncRNAs in sweet potato. The plant miRNA identification tools: NOVOMIR and miRPlant and miRNA-target prediction tools: psRNATarget and miRanda were compared. NOVOMIR and psRNATarget were found to be a better tool in miRNA identification and target prediction. MicroRNAs (miRNA) are 18-22nt small, endogenous non coding RNA that has prominent role in many biological processes. In the present study, we report the computational prediction of miRNAs and targets from expressed sequence tags (ESTs) of sweet potato. We predicted 13 novel potential miRNAs and 81 potential target genes and functionally characterized by BLASTX and BLAST2GO. The predicted target genes were credited with their role in signalling cascades, metabolism, and defence and stress responses. Another candidate that has more importance in the genome regulation is lncRNAs. lncRNAs are greater than 200 nucleotide length ncRNA candidate that holds functions at RNA level itself. RNAplonc is a plant long non coding RNA identification tool which uses 16 feature selection methods to predict long non coding RNA molecules. The present study which predicts 9215 lncRNAs and 8665 protein coding genes by RNAplonc in sweet potato for the first time using available ESTs sequences. Since there is a lack of lncRNA functional annotation tool, the functional analysis of predicted lncRNAs is quiet difficult. From the predicted miRNAs and lncRNAs two miRNAs and two lncRNAs were randomly selected for experimental validation by real time quantitative PCR using three different sweet potato varieties Sree Kanaka, ST13 and Khanjakad available at ICAR-CTCRI and compared the target gene’s expression in each variety. Validation results prove that both the miRNAs and lncRNAs shows their importance in crop improvement.
  • ThesisItemOpen Access
    Effect of heat stress on the expression patterns of different growth related genes in Malabari goats
    (Academy of Climate Change Education and Research, Vellanikkara, 2018) Angel Sunny, P; KAU; Bagath, M
    The impact of heat stress on growth performance of goats has been established fairly based on changes associated with phenotypic traits. However, not many reports are available on the genotypic traits which get altered on exposure to heat stress in livestock. Therefore, the study is an attempt to elucidate the molecular mechanisms governing growth performance during heat stress in goats. The primary objective of the study was to establish the influence of heat stress on the expression patterns of different growth related genes in Malabari goats. The study was conducted for a period of 45 days in twelve Malabari goats randomly allocated into two groups: MC (n=6; Malabari control) and MHS (n=6; Malabari Heat stress). Goats were stall-fed with a diet composed of 60% roughage and 40% concentrate. All animals had access to adlibitum feed and water and they were fed and watered individually. The MC goats were placed in the shaded pens while MHS goats were exposed to heat stress in outside environment between 10.00 h to 16.00 h. At the end of study period, all 12 animals were slaughtered and their liver tissues were collected for gene expression and histopathological studies. The temperature-humidity-index (THI) inside the shed (74.9) proved that the animals were not stressed while in the outside environment (86.5) the animals were extremely distressed. The hepatic growth hormone (GH), growth hormone receptor (GHR), insulin-like growth factor-1 (IGF-1), leptin (LEP) and leptin receptor (LEPR) gene expression patterns were significantly (P<0.05) lower in heat stress group as compared to the control group animals. In addition, negative correlation (P<0.05) was also established between THI and all the growth related gene expression in the study. The hepatic histopathological section showed more fatty and degenerative changes (P<0.05) in hepatocytes in MHS group as compared to MC group. The study offers the first thorough insight into the expression patterns of different growth related genes during heat stress exposure in goats. Further, the study established GH, GHR, IGF-1, LEP, LEPR genes to be the ideal markers to reflect growth potential in Malabari goats. The findings from this study provide some crucial initial information on how different growth relatedgenes are expressed when Malabari goats are subjected to heat stress. This information might be of high value in assessing the growth performance of goats and may provide useful information pertaining to nutrient supplementation to the heat stressed goats.
  • ThesisItemOpen Access
    Identification of water stress tolerant amaranthus genotypes (Amaranthus tricolor L.) with high yield and quality
    (Department of Plant Breeding and Genetics, College of Agriculture, Vellayani, 2018) Shahiba, A M; KAU; Beena Thomas
    The present study entitled “Identification of water stress tolerant amaranthus genotypes (Amaranthus tricolor L.) with high yield and quality” was carried out in the Department of Plant Breeding and Genetics, College of Agriculture, Vellayani during 2016-2018, with an objective to identify high yielding genotypes of amaranthus with good quality and tolerance to water stress. The study was conducted under two experiments. In the first experiment thirty accessions of Amaranthus tricolor L. available in the Department of Plant Breeding and Genetics and collected from other sources were evaluated for yield under field condition and morphologically described using IBPGR descriptor for the amaranthus. Madhur local (A22) recorded highest yield plant-1(125.926g) followed by Kalliyoor local (A4), Ayyanthole local (A28), Haripad local (A7), Palakkadu local (A2), Anachal local (A6), Aryanadu local (A21), Poonkulam local (A20), Kazhakkuttom local (A9) and Kannara local (A29). In the second experiment, these ten genotypes selected based on the yield were evaluated in a Randomized Block Design (RBD) with three replications during November 2017- December 2017. Water stress was imposed after 5 days of irrigation to water holding capacity to the transplanted seedlings by scheduling the irrigation at a depth of 20mm at 20mm CPE (Cumulative Pan Evaporation). Analysis of variance was calculated for all the characters under study and was found to be significant for all the genotypes evaluated. The mean performance of the genotypes for the characters were studied. The maximum yield was observed for the genotype A22 (Madhur local) followed by the genotype A9 (Kazhakkuttom local), genotype A20 (Poonkulam local) and genotype A2 (Palakkadu local) and the minimum yield was recorded for genotype A4 (Kalliyoor local). The genotype A22 (Madhur local) showed the highest mean values for stem girth, number of branches, length of leaf lamina, leaf to stem ratio, membrane integrity, relative water content, proline content of leaves, vitamin A and lowest oxalate content. The character Vitamin A content registered the highest GCV (41.22%) and PCV (41.25%). High heritability coupled with high genetic advance was observed for leaf width, number of branches, yield plant-1, protein content, fibre content and vitamin A. The yield plant-1was found to be significantly and positively correlated with leaf width, number of branches, yield plot-1, membrane integrity, proline content of leaves and vitamin A both at genotypic and phenotypic levels. Petiole length and percentage leachate were found to be negatively correlated with yield plant-1. Path analysis revealed that number of branches, yield plot-1and proline content of leaves had the maximum positive direct effect on yield plant-1. The results of the present study showed that genotype A22 (Madhur local) was superior in yield performance under water stress condition followed by the genotype A9 (Kazhakkuttom local), genotype A20 (Poonkulam local) and the genotype A2 (Palakkadu local). The genotype A22 (Madhur local) also recorded the maximum stem girth, number of branches, length of leaf lamina, leaf to stem ratio, membrane integrity, relative water content and proline content of leaves with high Vitamin A and low oxalate content. Presence of proline in the leaves might be considered as an important water stress tolerance mechanism.