Loading...
Thumbnail Image

Kerala Agricultural University, Thrissur

The history of agricultural education in Kerala can be traced back to the year 1896 when a scheme was evolved in the erstwhile Travancore State to train a few young men in scientific agriculture at the Demonstration Farm, Karamana, Thiruvananthapuram, presently, the Cropping Systems Research Centre under Kerala Agricultural University. Agriculture was introduced as an optional subject in the middle school classes in the State in 1922 when an Agricultural Middle School was started at Aluva, Ernakulam District. The popularity and usefulness of this school led to the starting of similar institutions at Kottarakkara and Konni in 1928 and 1931 respectively. Agriculture was later introduced as an optional subject for Intermediate Course in 1953. In 1955, the erstwhile Government of Travancore-Cochin started the Agricultural College and Research Institute at Vellayani, Thiruvananthapuram and the College of Veterinary and Animal Sciences at Mannuthy, Thrissur for imparting higher education in agricultural and veterinary sciences, respectively. These institutions were brought under the direct administrative control of the Department of Agriculture and the Department of Animal Husbandry, respectively. With the formation of Kerala State in 1956, these two colleges were affiliated to the University of Kerala. The post-graduate programmes leading to M.Sc. (Ag), M.V.Sc. and Ph.D. degrees were started in 1961, 1962 and 1965 respectively. On the recommendation of the Second National Education Commission (1964-66) headed by Dr. D.S. Kothari, the then Chairman of the University Grants Commission, one Agricultural University in each State was established. The State Agricultural Universities (SAUs) were established in India as an integral part of the National Agricultural Research System to give the much needed impetus to Agriculture Education and Research in the Country. As a result the Kerala Agricultural University (KAU) was established on 24th February 1971 by virtue of the Act 33 of 1971 and started functioning on 1st February 1972. The Kerala Agricultural University is the 15th in the series of the SAUs. In accordance with the provisions of KAU Act of 1971, the Agricultural College and Research Institute at Vellayani, and the College of Veterinary and Animal Sciences, Mannuthy, were brought under the Kerala Agricultural University. In addition, twenty one agricultural and animal husbandry research stations were also transferred to the KAU for taking up research and extension programmes on various crops, animals, birds, etc. During 2011, Kerala Agricultural University was trifurcated into Kerala Veterinary and Animal Sciences University (KVASU), Kerala University of Fisheries and Ocean Studies (KUFOS) and Kerala Agricultural University (KAU). Now the University has seven colleges (four Agriculture, one Agricultural Engineering, one Forestry, one Co-operation Banking & Management), six RARSs, seven KVKs, 15 Research Stations and 16 Research and Extension Units under the faculties of Agriculture, Agricultural Engineering and Forestry. In addition, one Academy on Climate Change Adaptation and one Institute of Agricultural Technology offering M.Sc. (Integrated) Climate Change Adaptation and Diploma in Agricultural Sciences respectively are also functioning in Kerala Agricultural University.

Browse

Search Results

Now showing 1 - 1 of 1
  • ThesisItemOpen Access
    Studies on exchange equilibria and its prediction on some acid soils of Kerala
    (Department of Soil Science and Agricultural Chemistry, College of Horticulture, Vellayani, 1988) Swarnavi, S; KAU; Pushakala, S
    More than 70 per cent of the upland soils of Kerala are acidic. The acidity of the soil is primarily associated with the presence of hydrogen and aluminium in exchangeable form. The soil solution aluminium in acid soil infertility clearly establishes the agronomic significance of aluminium ion equilibria in soils. The present study, entitled “Studies on exchange equilibria and its prediction on some acid soils of Kerala” was conducted to find out(1) the effect of different concentrations of aluminium in the electrolyte solution on exchange equilibria in soils (2) the influence of different cations on the free energy and various selectivity coefficients (3) the dependence of different selectivity coefficients on potassium, calcium and magnesium saturation of soils (4) the role of organic matter on cation exchange equilibria with special reference to potassium, calcium, magnesium and aluminium. Cation exchange equilibria involving aluminium- potassium, aluminium – calcium and aluminium- magnesium were studied in three soil types, viz., Kari, laterite and redloam soils, differencing in their texture and organic matter content. The normalized exchange isotherms for different soils and cationic systems were drawn and the results were interpreted in terms of different selectivity coefficients and approximate free energy change of the exchange reactions. From the study on the effect of different electrolyte concentration of aluminium on aluminium – potassium, aluminium- calcium and aluminium – magnesium exchange, an increasing aluminium adsorption was observed with an increase in electrolyte concentration of aluminium. The adsorption of aluminium was maximum in soils with high organic matter content. The normalized exchange isotherms of aluminium for different cationic systems and soils lay above the diagonal, suggested the preferential adsorption of aluminium over other cations. Except the Gapon selectivity coefficient, all the other coefficients (KKDO, KV and KN) increased upto a certain value of base saturation and then decreased. The value of KG increased with increase in base satuation. Among the various selectivity coefficients, KN was found to be the most dependent one and KG the least dependent. The dependence followed the order KN > KV > KKDO > KG. The negative values of free energy change for different cationic systems suggested the preferential adsorption of potassium, calcium and magnesium over aluminium. Among these cations potassium was found to be adsorbed with more energy, followed by calcium, magnesium, and then by aluminium. The values of free energy change showed the following order of preference for the competing cations: K > Ca > Mg > Al. From the study it can be concluded that potassic fertilizers can be effectively used in acid soils of Kerala, because of its high retention and minimum leaching loss. Compared to potassium, calcium and magnesium were adsorbed with less bond energy and hence to maintain a higher concentration of these cations in the soil exchanger, a considerable amount of calcium and magnesium should be supplied by frequent application of lime. To evaluate correctly the response of applied potassic fertilizers and liming material in different soils, efforts should be made to relate exchange behaviour of potassium, calcium and magnesium to the nature and relative proportion of different soil clay minerals. Similarly, the extension of the predictive approach essentially meant for binary system need special attention in order to make the studies on cation exchange equilibria more realistic and field oriented.