Loading...
Thumbnail Image

Kerala Agricultural University, Thrissur

The history of agricultural education in Kerala can be traced back to the year 1896 when a scheme was evolved in the erstwhile Travancore State to train a few young men in scientific agriculture at the Demonstration Farm, Karamana, Thiruvananthapuram, presently, the Cropping Systems Research Centre under Kerala Agricultural University. Agriculture was introduced as an optional subject in the middle school classes in the State in 1922 when an Agricultural Middle School was started at Aluva, Ernakulam District. The popularity and usefulness of this school led to the starting of similar institutions at Kottarakkara and Konni in 1928 and 1931 respectively. Agriculture was later introduced as an optional subject for Intermediate Course in 1953. In 1955, the erstwhile Government of Travancore-Cochin started the Agricultural College and Research Institute at Vellayani, Thiruvananthapuram and the College of Veterinary and Animal Sciences at Mannuthy, Thrissur for imparting higher education in agricultural and veterinary sciences, respectively. These institutions were brought under the direct administrative control of the Department of Agriculture and the Department of Animal Husbandry, respectively. With the formation of Kerala State in 1956, these two colleges were affiliated to the University of Kerala. The post-graduate programmes leading to M.Sc. (Ag), M.V.Sc. and Ph.D. degrees were started in 1961, 1962 and 1965 respectively. On the recommendation of the Second National Education Commission (1964-66) headed by Dr. D.S. Kothari, the then Chairman of the University Grants Commission, one Agricultural University in each State was established. The State Agricultural Universities (SAUs) were established in India as an integral part of the National Agricultural Research System to give the much needed impetus to Agriculture Education and Research in the Country. As a result the Kerala Agricultural University (KAU) was established on 24th February 1971 by virtue of the Act 33 of 1971 and started functioning on 1st February 1972. The Kerala Agricultural University is the 15th in the series of the SAUs. In accordance with the provisions of KAU Act of 1971, the Agricultural College and Research Institute at Vellayani, and the College of Veterinary and Animal Sciences, Mannuthy, were brought under the Kerala Agricultural University. In addition, twenty one agricultural and animal husbandry research stations were also transferred to the KAU for taking up research and extension programmes on various crops, animals, birds, etc. During 2011, Kerala Agricultural University was trifurcated into Kerala Veterinary and Animal Sciences University (KVASU), Kerala University of Fisheries and Ocean Studies (KUFOS) and Kerala Agricultural University (KAU). Now the University has seven colleges (four Agriculture, one Agricultural Engineering, one Forestry, one Co-operation Banking & Management), six RARSs, seven KVKs, 15 Research Stations and 16 Research and Extension Units under the faculties of Agriculture, Agricultural Engineering and Forestry. In addition, one Academy on Climate Change Adaptation and one Institute of Agricultural Technology offering M.Sc. (Integrated) Climate Change Adaptation and Diploma in Agricultural Sciences respectively are also functioning in Kerala Agricultural University.

Browse

Search Results

Now showing 1 - 1 of 1
  • ThesisItemOpen Access
    Agrotechniques for enhancing root production in Desmodium gangeticum (L.) DC under partial shade
    (Department of Agronomy, College of Agriculture,Vellayani, 2019) Abhijith, S S; KAU; Anilkumar, A S
    The study entitled “Agrotechniques for enhancing root production in Desmodium gangeticum (L.) DC. under partial shade” was undertaken during 2017-2019, in the Instructional farm, College of Agriculture, Vellayani, Thiruvananthapuram, Kerala, with an objective to study the integrated effect of root endophyte fungus, planting density, source efficacy of nutrients, moisture stress and subsurface mulching on the growth, yield and quality constituents of Desmodium gangeticum (L.) DC. under partial shade. The field experiment was laid out in randomized block design with 12 treatments and three replications. The treatments were, T1 – Inoculation with Piriformospora indica (root endophyte) alone, T2 – T1 + Soil application of cow dung slurry (5% at monthly interval), T3 – T1 + Soil application of NPK (basal- @ 40:40:40 kg ha-1 year-1), T4 – T2 + Irrigation at 15 mm depth, T5 – T2 + Irrigation at 30 mm depth, T6 – T3 + Irrigation at 15 mm depth, T7 – T3 + Irrigation at 30 mm depth, T8 – T5 at high density planting (40 cm x 20 cm), T9 – T7 at high density planting, T10 – T8 under subsurface mulching with black polythene, T11 – T9 under subsurface mulching with black polythene and T12 – control at normal row planting (40 cm x 40 cm). Piriformospora indica was inoculated with the potting medium @ 10g fungal culture kg-1 of potting medium. Results of the experiment revealed that integrated management practices have significant effects on growth and yield attributes of D. gangeticum. The treatment T7 recorded the tallest plants at 3 and 4 months after transplanting (MAT) whereas, T9 was superior at 5, 6 and 7 MAT and at harvest. The treatment T7 registered the highest number of branches at all stages of growth. At 3 and 5 MAT, T6 recorded the highest leaf number whereas T7 was superior at 4, 6 and 7 MAT and at harvest. T5 registered the highest root number at 3 MAT but T10 was found superior at 5, 6 and 7 MAT and at harvest. At 2 MAT, T9 and at all other growth stages, T7 recorded the highest root spread. T5 at 3 MAT, T7 at 5 and 6 MAT and at harvest and T6 at 7 MAT registered the highest root volume. With respect to length of tap root, the treatments T9 at 3, 4, and 6 MAT and at harvest and T8 at 7 MAT were found superior. At 3 MAT, T5 revealed the highest girth of primary root but at 5, 6 and 7 MAT, T7 and at harvest T6 were found superior. The treatment, T7 registered the longest laterals at 5, 6 and 7 MAT and at harvest. The root fresh and dry weight showed a similar trend. The treatments T9 at 3 MAT, T6 at 5 and 7 MAT and T7 at 6 MAT and at harvest showed the highest fresh and dry root weight. The highest root yield at harvest was recorded by T8 which was on par with T9, T10 and T11. Chlorophyll content varied with different growth stages. T5 at 2 MAT, T6 at 5 MAT, T11 at 6 MAT and T9 at 4 and 7 MAT and at harvest registered the highest total chlorophyll content. Like chlorophyll content, RLWC also showed variations with respect to different growth stages. T2 at 3 and 4 MAT, T6 at 7 MAT and T7 at 5 and 6 MAT and at harvest recorded the highest values. At 5 and 7 MAT and at harvest T7, T5 and T6 respectively recorded the highest root-shoot ratio. The treatments T11 and T9 at 2 and 7 MAT and T8 at 3, 5 and 6 MAT and at harvest registered the highest leaf area index. Observations on crop growth rate showed the significance of T8 at 4 to 5 MAT, T6 at 6 to 7 MAT and T9 at 5 to 6 MAT and 7 MAT to harvest. With respect to relative growth rate, T4 at 2 to 3 MAT and T6 at 3 to 4, 4 to 5 and 6 to 7 MAT followed by T9 at 7 MAT to harvest were found superior. At 2 to 3 and 4 to 5 MAT, the treatments T11 and T10 respectively recorded the highest values for net assimilation rate. Ethanol extract of plant roots grown under control at normal row planting (40 cm x 40 cm) (T12) recorded the highest total alkaloids at harvest. Among seed parameters, only number of seeds per inflorescence was significantly influenced by the treatments at 6 MAT and it was the highest in T1. Soil moisture studies revealed the significance of T8 and T9 in enhancing soil moisture retention before and after irrigation. T4 on par with T6 registered the highest consumptive use, daily consumptive use and Kc. Crop water use efficiency was the highest for the treatment T8. T2 registered the highest field water use efficiency and water productivity. T9 recorded the highest up take of primary plant nutrients. After the experiment, organic carbon and available K status of soil were found superior in T3 and T10. Even though nursery seedlings exhibited P. indica root colonization at harvest, it was not clearly evident through microscopic investigation. Economic analysis of the system revealed the significance of T8 (₹ 47,902 ha-1) which was on par with T9 and T10 with respect to net income. The highest benefit-cost ratio was also registered by T8 which was significantly superior to all other treatments. It is concluded that high density planting of P. indica inoculated seedlings under partial shade followed by monthly application of cow dung slurry (5 %) and scheduling irrigation at 30 mm depth once in six days (T8) was found beneficial for enhancing leaf area index, root production, crop water use efficiency, net income (₹ 47,902 ha-1) and benefit-cost ratio (1.74).