Loading...
Thumbnail Image

Kerala Agricultural University, Thrissur

The history of agricultural education in Kerala can be traced back to the year 1896 when a scheme was evolved in the erstwhile Travancore State to train a few young men in scientific agriculture at the Demonstration Farm, Karamana, Thiruvananthapuram, presently, the Cropping Systems Research Centre under Kerala Agricultural University. Agriculture was introduced as an optional subject in the middle school classes in the State in 1922 when an Agricultural Middle School was started at Aluva, Ernakulam District. The popularity and usefulness of this school led to the starting of similar institutions at Kottarakkara and Konni in 1928 and 1931 respectively. Agriculture was later introduced as an optional subject for Intermediate Course in 1953. In 1955, the erstwhile Government of Travancore-Cochin started the Agricultural College and Research Institute at Vellayani, Thiruvananthapuram and the College of Veterinary and Animal Sciences at Mannuthy, Thrissur for imparting higher education in agricultural and veterinary sciences, respectively. These institutions were brought under the direct administrative control of the Department of Agriculture and the Department of Animal Husbandry, respectively. With the formation of Kerala State in 1956, these two colleges were affiliated to the University of Kerala. The post-graduate programmes leading to M.Sc. (Ag), M.V.Sc. and Ph.D. degrees were started in 1961, 1962 and 1965 respectively. On the recommendation of the Second National Education Commission (1964-66) headed by Dr. D.S. Kothari, the then Chairman of the University Grants Commission, one Agricultural University in each State was established. The State Agricultural Universities (SAUs) were established in India as an integral part of the National Agricultural Research System to give the much needed impetus to Agriculture Education and Research in the Country. As a result the Kerala Agricultural University (KAU) was established on 24th February 1971 by virtue of the Act 33 of 1971 and started functioning on 1st February 1972. The Kerala Agricultural University is the 15th in the series of the SAUs. In accordance with the provisions of KAU Act of 1971, the Agricultural College and Research Institute at Vellayani, and the College of Veterinary and Animal Sciences, Mannuthy, were brought under the Kerala Agricultural University. In addition, twenty one agricultural and animal husbandry research stations were also transferred to the KAU for taking up research and extension programmes on various crops, animals, birds, etc. During 2011, Kerala Agricultural University was trifurcated into Kerala Veterinary and Animal Sciences University (KVASU), Kerala University of Fisheries and Ocean Studies (KUFOS) and Kerala Agricultural University (KAU). Now the University has seven colleges (four Agriculture, one Agricultural Engineering, one Forestry, one Co-operation Banking & Management), six RARSs, seven KVKs, 15 Research Stations and 16 Research and Extension Units under the faculties of Agriculture, Agricultural Engineering and Forestry. In addition, one Academy on Climate Change Adaptation and one Institute of Agricultural Technology offering M.Sc. (Integrated) Climate Change Adaptation and Diploma in Agricultural Sciences respectively are also functioning in Kerala Agricultural University.

Browse

Search Results

Now showing 1 - 9 of 75
  • ThesisItemOpen Access
    Availability indices for stressed nutrients for coconut (Cocos nucifera L) in an ultisol
    (Department of Soil Science and Agricultural Chemistry, College of Horticulture, Vellanikkara, 2003) Priya, P; KAU; Sureshkumar, P
    The present study was conducted with an objective to analyse the soil-plant system, the levels and interactions of nutrient ions in soil, soil solution and plant thereby / finding out the contributing factors to yield. The importance of the term relative intensity lies in the fact that the contribution of mineral elements to growth and yield of plants depend much on the relative amount of one element with respect to the others rather than the absolute content of individual elements. To study the ionic interactions and to unravel the role of Net Ionic Equilibrium based on Ratio Law on soil plant system, a sample of fifty phenotypically identical palms varying in yield from 14.4 to 84.4 nuts palm" year"! grown under an Ultisol were selected. Index leaf samples were collected during pre and post monsoon seasons from 25 palms each from high yielding and low yielding groups. Soil samples were also collected from the basins of these palms during the same seasons at 30 cm (surface) arid 60 cm (subsurface) depths. Soil solutions at saturation point were extracted from the surface samples by centrifugation technique. These leaf, soil and solution samples were analysed / . for different nutrient ions, and the NIE ratios in these three phases were worked out with respect to K and Na. The soil samples were acidic in nature and the variation in rhizosphere pH must have definitely influenced the solubility as well as absorption of different nutrient ions. In the case of available nutrients, the micro nutrients showed significant direct relation with yield both for high and low yielding populations. This might be due to their restricted availability due to aerobic oxidised condition where Fe and Mn might have been precipitated and got into unavailable forms. The BaCh exchangeable ions and the CEC derived from summing up of these exchangeable ions influenced yield directly. Exchangeable K had got a significant dominance in deciding the NIE ratio in soil, solution and in index leaves. Exchangeable K controlled the soil solution concentration of K which in turn controlled the NIE ratio in solution and the ratios in plant. Exchangeable K directly controlled the plant K content and plant K was positively and significantly correlated with the NIE ratios in plant and these ratios were positively and significantly correlated with yield. The negative significant correlation of exchangeable K with plant Mn and Zn revealed the antagonistic effect of exchangeable K in restricting the absorption of Mn and Zn by plants. Among the ionic concentrations in soil solution, Fe was positively and significantly correlated with yield in both the seasons. Soil solution concentrations of Ca and Mg were antagonistically and significantly related with plant Mn content. Potassium content and the NIE ratio in index leaves were found to have a significant direct relation with yield in the pre-monsoon season. Potassium, Ca and Mg were the dominant cations in plant deciding the total cation concentration in index leaves. The NIE ratios between the exchangeable ions, the ions in soil solution and the ions in index leaf samples were mutually, .positively and significantly correlated among themselves. This lead to the conclusion that there exists a constancy in the relative proportion of nutrient ions in the entire soil-plant system which followed Ratio Law. The study lead to the conclusion that the soil test values of the individual ions alone or the plant content of individual ions alone can't give a clear picture of optimum nutrient requirements for the plant. The relative concentration of K in soil through the ~ concentration in soil solution was found to govern the relative concentration in plant which in turn influenced the yield.
  • ThesisItemUnknown
    Utilisation of dairy industry solid waste as an organic source in soil productivity
    (Department of soil science and agricultural chemistry, College of Agriculture, Vellayani, 2004) Indu, B; KAU; Usha, Mathew
    An investigation entitled ‘Utilization of dairy industry solid waste as an organic waste in soil productivity’ was carried out at College of Agriculture, Vellayani to study the feasibility of using dairy industry solid waste (dsw) as an organic source for improving soil productivity. The experiment consisted of four parts viz., characterization of dsw, vermicomposting of dsw, incubation study to monitor the changes in physical property, nutrient availability and microbial population in soil and pot culture experiment to study the influence of cdsw on amaranthus. The dairy waste collected from TRCMPU Ltd. at Ambalathara, Thiruvananthapuram was used in the present study. The physico-chemical and microbial analysis of dsw were done using suitable analytical procedures. Vermicomposting was carried out in pits of size 1 m x 0.5 m x 0.5 m using vegetable wastes, ground dsw and cowdung in the ratio 5:3:1 by the activity of earthworm Eudrillus eugeniae. Vermicompost was prepared according to package of practices recommendations of Kerala Agricultural University. Incubation study was conducted at the laboratory to monitor the nutrient release pattern and changes in physical properties and microbial population in soil. Two kg of soil was taken in plastic containers of uniform size and incubated at 60 per cent field capacity for three months after application of treatments. The experiment was laid out in CRD with seven treatments viz., T0 - absolute control, T1 – soil + 25 g fym, T2 – soil + 25 g dsw, T3 – soil + 12 ½ g fym + 12 ½ g dsw, T4 – soil 12 ½ g fym + 6 ¼ g dsw, T5 – soil + 12 ½ g cdsw, T6 –soil+ 6 ¼ g cdsw. Physico-chemical and microbilogical properties of soil were analysed at an interval of 1, 2, 4, 6, 8 and 12 weeks. The pot culture experiment was conducted to study the influence of dsw on growth, yield and quality of amaranthus. It was laid out in CRD with a treatments viz., T0 – absolute control, T1 – fertilizers and fym as per POP, T2 – POP fertilizers and 50 t ha-1 cdsw, T3 – POP fertilizers + fym 25 t ha-1 and cdsw 25 t ha-1, T4 – POP fertilizers and fym 25 t ha-1 and cdsw 12 ½ t ha-1, T5 – 2/3 N + full NPK of POP + fym 25 t ha-1 and cdsw 25 t ha-1, T6 – 2/3 N + full PK of POP and fym 25 t ha-1 + cdsw 12 ½ t ha-1, T7 – ½ N + full PK of POP + fym 25 t ha-1 + cdsw 25 t ha-1, T8 – ½ N + full PK of POP and fym 25 t ha-1 and cdsw 12 ½ t ha-1. Observations on various biometric and yield parameters have been recorded and analysis of plant sample were done at three stages of growth of plant viz., 30, 45 and 60 days after transplanting. The nutrient status of soil after the experiment was also analysed. Analysis of physico-chemical and microbial properties of dsw revealed that it had a near neutral pH (6.5) and it contained 37.5 per cent organic carbon, 5.80 per cent N, 2.04 per cent P, 0.71 per cent K, 1.69 per cent Ca, 1.58 per cent Mg, 1.71 per cent Fe, 159 mg kg 1 Mn and 1084 mg kg 1 Zn. Population of bacteria, fungi and actinomycetes in dsw were 13.3 x 106, 11.6 x 104 and 1.3 x 104 respectively. The results of the study revealed that vermicomposting can be successfully done in dsw using Eudrillus eugeniae. Vermicompost with a C : N ratio of 11.12 was obtained after 60 days of composting. The final compost contained 3.12 per cent N, 1.97 per cent P, 1.81 per cent K, 2.05 per cent Ca, 3.55 per cent Mg, 0.80 per cent Fe, 230 mg kg-1 Mn, 408 mg kg-1 Zn and 44 mg kg¬-1 Cu. Number of bacteria, fungi and actinomycetes in the compost at maturity stage were 42.6 x 106, 38.6 x 104 and 21.3 x 104 respectively. From the incubation study, it can be seen that nutrient content of soil increased upto 6-8 weeks in all treatments except T0 followed by a gradual decline. All nutrients except Cu were more on cdsw applied treatment in the initial period. Cu content was more in fym applied treatment. Nutrient availability was more from fym applied treatments during later periods of incubation. Bulk density of soil decreased in all treatments except T0 upto six weeks of incubation followed by a gradual increase in 8 and 12 weeks. Treatment in which cdsw was applied at higher dose showed the lowest bulk density. Upto six weeks the highest water holding capacity was noticed in cdsw applied treatments, after that fym applied treatments showed highest water holding capacity. Bacterial and fungal population reached the peak in sixth week and then declined. Upto eight weeks the effect of treatments was non significant with respect to actinomycete population. The pot culture experiment indicated the influence of cdsw on growth, yield and quality of amaranthus. Biometric and yield observation have proved the superiority of cdsw over fym. Beta-carotene content was more in cdsw applied treatments. Total yield and B:C ratio were the highest when cdsw was used as a partial substitute for fym. Physico-chemical properties of soil after the pot culture experiment revealed that pH, EC, organic carbon and available nutrients increased in all treatment except in T0 compared to the initial soil. pH, EC, organic carbon, available P, Ca and Fe were the highest in T2 which received cdsw at higher dose while the available N, K, Mg, Mn, Zn and Cu were the highest in T1 which received fym. From the results it can be concluded that effective biomanagement of dsw can be carried out using Eudrillus eugeniae. Better availability of nutrients especially nitrogen from cdsw compared to fym immediately after application as evidenced by incubation study is advantageous for short duration leafy vegetables. Use of cdsw can reduce the use of fym partially or fully in amaranthus. Fertilizer N can also be reduced to the extent of 1/3 of POP recommendation.
  • ThesisItemOpen Access
    Soil test crop response studies on groundnut in laterite soils of Kerala
    (Department of Soil Science and Agricultural Chemistry, College of Horticulture, Vellanikkara, 2005) Sidha, P S; KAU; Betty, Bastin
    The investigation entitled “STCR studies on groundnut (Arachis hypogaea L.) in laterite soils of Kerala” was conducted during 2003-2004 in the farm attached to College of Horticulture, Vellanikkara. Objectives of the study were to develop soil test based balanced fertilizer recommendation for specific yield targets to groundnut in laterite soils of Kerala, and to develop a basis for fertilizer recommendation for maximum and economic pod yield at varying STVs. The experiment consisted of FGE and STCR experiment. The aim of FGE was to create desired gradient in soil fertility in one and the same field by applying graded doses of N, P and K fertilizers and raising an exhaustive crop, fodder maize Co-1. After development of fertility gradient, the STCR experiment was conducted in the same field with the test crop groundnut variety TAG-24. The soil nutrient status before and after the experiment were analysed for both FGE and STCR. The nutrient requirements of groundnut variety TAG-24 were estimated as 49.46, 4.25 and 19.52 kg ha-1 N, P and K respectively to produce one tonne of pod. The soil efficiencies were worked out as 28.11, 7.70, 6.88 per cent for N, P and K respectively for groundnut in laterite soil. The contribution of nutrients from fertilizers were estimated as 45.61, 11.18 and 27.33 per cent for N, P and K respectively and the contribution from organic manure were 49.46, 4.25 and 19.52 per cent N, P and K respectively to produce one tonne of pod. Fertilizer prescription equations for specific yield targets of groundnut variety TAG-24 were derived by using the above basic data and the equations were as follows: Without FYM FN = 108.44 T - 0.616 SN FP = 38.01 T - 1.577 SP FK = 71.43 T - 0.305 SK With FYM FN = 108.44 T - 0.616 SN - 1.59 OM FP = 38.01 T - 1.577 SP - 1.87 OP FK = 71.43 T - 0.305 SK - 1.85 OK Multiple regression models were calibrated with yield as dependent variable and soil available and applied nutrients as independent variables. Among the three nutrients, P and K showed normal type (+, -, -) of response in both models with 15 and 17 variables. So equations were calibrated for these two nutrients. The equations were as follows: With 15 variables FP = 32.47 - 0.709 SP FK = 321.36 - 0.429 SK With 17 variables FP = 76.27 - 2.645 SP FK = 312.37 - 0.413 SK Simple correlation coefficient was worked out for nutrient uptake with yield, nutrient uptake and yield with available and applied nutrients and major plant nutrient content with yield. The study is useful to adjust fertilizer doses based on the specific objective and available resources of groundnut farmers of the state.
  • ThesisItemOpen Access
    Sulphur and boron nutrition and their foliar diagnosis in sesame
    (Department of Soil Science and Agricultural Chemistry,College of Agriculture, Vellayani, 2010) Jeena, Mathew; KAU; Sumam, George
    A laboratory cum field experiment was conducted to study the effect of S and B on the growth, yield and quality of sesame var. Thilarani and to standardize the foliar diagnosis of these elements in Onattukara sandy loam soil. The study included an incubation study and two field experiments. The treatments comprising the different levels of S and B laid out in 42factorial RBD. The treatments were T1(S0B0), T2(S0B1), T3(S0B2), T4(S0B3), T5(S1B0), T6(S1B1), T7(S1B2), T8(S1B3), T9(S2B0), T10(S2B1), T11(S2B2), T12(S2B3), T13(S3B0), T14(S3B1), T15(S3B2), T16(S3B3). The different levels of S were S0 (0 kg ha-1), S1 (7.5 kg ha-1), S2, (15 kg ha-1) and S3 (30 kg ha-1) and B0 (0 kg ha-1), B1(2.5 kg ha- 1), B2 (5 kg ha-1) and B3 (7.5 kg ha-1). The incubation study was conducted at College of Agriculture, Vellayani to understand the dissolution and release pattern of S and B from their sources gypsum and borax respectively in Onattukara sandy soil. The results revealed that the release of S and B was maximum at the 30th DOI. Increasing levels of S and B has a positive influence on the S content of the soil. T16 (S3B3) recorded the highest value at all the sampling stages for S whereas in the case of B, the treatment combinations which received B at the highest levels in combination with S3 or S2 showed the highest value. The field experiments were laid out at ORARS, Kayamkulam in 42 factorial RBD having two replications using Thilarani as the test crop. It was observed that application of S and B favourably influenced the yield and yield attributes of sesame. T16 was found to be the treatment which gave the highest grain yield and oil yield in both the years and was found to be on par with T14 (S3B1). S3 was the superior S level. As for the different levels of B, B1 can be inferred as the best level. The content of saturated fatty acids such as palmatic and stearic acid showed a decreasing trend with increasing levels of S and B whereas the content of the unsaturated fatty acids showed an increasing trend. The quality attributes of oil such as acid value, iodine value and saponification value was also studied and it was found that there is a decreasing trend with regard to acid and saponification value and an increasing trend for iodine number. The grain protein content also showed an increasing trend with the increase in rate of application of S and B. Regarding the content and uptake of N, P, K, S, B, Fe, Mn, Cu and Zn, a favourable influence for the different levels of S and B was recorded. Results regarding the S and B use efficiency and their apparent recovery showed that with increase in levels of S, an increasing trend was observed for S. In the case of B, increase was noticed up to B1 (2.5 kg ha-1) and there after showed a decreasing trend. This positive influence was also reflected on the available nutrient status of the soil such as organic carbon content, available N, P, K, S, B and DTPA extractable micronutrients. Correlation studies conducted to standardize the part and stage of sampling for the foliar diagnosis of sesame showed petiole at 30 DAS and 20 DAS in the case of S and B respectively. The same stages were found for the soil sampling also for both the nutrients. The critical nutrient level in the part standardised for these two nutrients were standardized using the graphical method proposed by Cate and Nelson (1965). In the case of S, it had been standardized as 0.088 per cent and for B, it had been found to be 28 mg kg-1. The critical nutrient level in soil was also estimated using the scatter diagram technique and was found to be 23 kg ha-1 at 30 DAS for S and 1.4 ppm at 20 DAS for B. Hence the application of S @ 30 kg ha-1 and B @ 2.5 kg ha-1 could faourably enhance growth of sesame with regard to the growth characters, yield and yield attributes and the quality aspects. Moreover, analysis of the plant and soil samples at the critical stages fixed for the respective nutrients will provide the necessary data for the sustainable management of the crop in Onattukara sandy loam soil.
  • ThesisItemUnknown
    Site specific nutrient management for chilli (Capsicum annum.L) in kalliyoor panchayath of kerala
    (Department of Soil Science and Agricultural Chemistry,College of Agriculture,Vellayani, 2011) Priya, U K; KAU; Sudharmai Devi C R
    Site Specific Nutrient management is a technology in precision fanning that offers chance for farmers to achieve the targeted yield taking into consideration the potential yield of the crop by application of apt amount of fertilizers. The technology is farmers' friendly, eco-friendly and also consumer friendly. In Indian scenario wherein farmers are suffering from yield losses up to 40% due to micronutrient deficiency of soils mainly zinc and boron deficiencies are the yield limiting factors of production. Kerala the soils are low in basic ions that are posing serious threat to crop production. The Judicious application of chemical fertilizers along with micronutrients is necessary for sustainable crop production. The present study "Site Specific Nutrient Management in" Chilli (Capsicum annuum.L.) in Kalliyoor Panchayath Of .Kerala" was carried out to satisfy the objectives viz. study the spatial variability of area, to find outtheindigenous nutrient supply via omission trials, fix a target yield based on the potential yield of the crop and formulate a site specific nutrient recommendation to obtain the targeted yield. In order to understand the spatial variability survey was conducted at 25 sites of Kalliyoor panchayath. The results of survey showed that the soils showed wide variation in terms of soil physical and chemical properties. Soil phosphorus status , was high in all cases other nutrient concentration ranged from low to high. The spatial variability necessitated carrying out the omission trials at four different sites that were ranked according to the nutrient status into high, medium first level, medium second level and low fertility soils. From the omission trials the recovery fraction and, indigenous nutrient supply were calculated. Utilising all these parameters in QUEFT model SSNJ\:1.--tre tments were fixed. /' / / - :l.33- The high yield target was fixed at 16 t ha that was 50% of the potential yield. The nutrient recommendation generated for HYT was 104.8: 13.6: 201 kg N, P205 and K20 ha-I. Medium yield target was fixed at 168:51: 230 kg N, P205 and K20 ha- I. Taking into account micronutrient and secondary nutrient deficiencies in the soil. In high yield target soil application of micro nutrients and secondary nutrients along with application of 1 % foliar spray of boron was recommended. Micronutrients for soil application were boron @ 5 kg ha-I in form of borax, zinc @ 20 kg ha-I in form of zinc sulphate. Secondary nutrients applied were calcium @ 30 kg ha-I in form of CaS04, magnesium @ 7.5 kg ha-I in form of MgS04. The requirement of sulphur was met from soil applied zinc sulphate, calcium sulphate and magnesium sulphate. In medium yield target only soil application of micro and secondary nutrients along with the application of QUEFT generated recommendations for the crop; POP + micronutrient recommendations were evaluated. Simultaneously an absolute control was also carried out. Soil analysis was carried out for all the physical and chemical properties of the soil initially before the crop was raised, and after each harvest. So that change in soil properties as a result of application of treatments could be evaluated, since the application of fertilizer coincided with each harvest. The results derived from the experiment proved the superiority of SSNM over other treatments with respect to the yield major nutrient and micronutrient uptake. , Where high yield target registered a cumulative yield of 17. 32 tons, medium yield target registered a cumulative yield of 11.75 tons this was _much superior to POP+SNMN that registered an yield of 9.83 tons, or the package of practice recommendation that registered an yield of only 8.3 tons . Farmers practice registered inferior yield data of only 5.2 tons. The study revealed that the site specific nutrient management is an efficient technology to increase the yield of crops and hence provide additional income to the farmers; this technique also provides a -134 - scope of increasing the yield without over application of fertilizers that would result in deterioration of the soil physical and chemical properties in long run.
  • ThesisItemOpen Access
    Nitrogen and sulphur interaction on their release pattern and use efficiency in ferralitic soils.
    (Department of Soil Science and Agricultural Chemistry,College of Agriculture, Vellayani, 2011) Mariya Dainy, M S; KAU; Usha, P B
    An experiment was carried out at College of Agriculture, Vellayani to investigate the interactive effect of nitrogen and sulphur on their release pattern and use efficiency in ferralitic soils with bhindi as the test crop. The experiment consisted of an incubation study and a field experiment. The incubation study was carried out to understand the release pattern of N and S from their sources viz. urea and gypsum in the soil at different sampling stages (30 and 100 days of incubation) using ferralitic soil kept at field capacity. The treatments consisted of M1N1S1, MINIS2 , M1N1S3 , M1N2S1 , M1N2S2 ,M1N2S3 ,M1N3S1 , M1N3S2 , M1N3S3 , M2N1S1 , M2N1S2 , M2N1S3 , M2N2S1 , M2N2S2 , M2N2S3 , M2N3S1 , M2N3S2 and M2N3S3 and M0N0S0 . Levels of N include N1 (50 kg ha-1), N2 (80 kg ha-1) and N3 (110 kg ha-1). M1 include P2O5 @ 8 kg ha-1+ K2O @ 25kg ha-1 (current POP) and M2 include P2O5 @ 35 kgha-1 + K2O @ 70 kg ha-1(modified POP). Different levels of S are S1 (10 kg ha-1), S2 (15 kg ha-1) and S3 (20 kg ha-1). Soil samples were collected and analyzed for pH, available N and available S content. There was increase in pH value to the neutral range at fifty per cent flowering stage (30 Days of Incubation) and all the treatments showed a decreasing trend in the pH value at 100 Days of Incubation. Available N and available S content increased to some extent at fifty per cent flowering and decreased at the final harvest stage. Application of N up to 110 kg ha-1 significantly increased the available N status of soil and S application up to 20 kg ha-1 increased the soil S status during incubation. The field experiment was laid out in 2×3×3+1 factorial RBD having three replications using bhindi variety Varsha Uphar as the test crop. The treatments were similar to that of the incubation study. S application @15 kg ha-1 significantly reduced the internodal length. N and S interaction N @ 80 kg ha-1 and S @ 15 kg ha-1 showed significant influence on fruit length. The maximum number of fruits and highest yield was obtained when the nutrients were applied @ 80 kg N ha-1 + 8 kg P2O5 ha-1 + 25 kg K2O ha-1 + 15 kg S ha-1. Considering the N and S interaction effects, combined application of N @ 80 kg ha-1 and S @ 20 kg ha-1 increased the number of fruits and yield. Application of N up to 80 kg ha-1 increased the crop yield and above this level, there was reduction in yield. The increase in number of fruits per plant by the application of N and S may be due to the highest uptake and efficient utilization of nutrients. N @ 110 kg ha-1 and S @ 20 kg ha-1 recorded the highest dry matter content. S application @ 15 kg ha-1 showed significant influence on N Use Efficiency (NUE) in bhindi. Application of 80 kg N ha-1 + 8 kg P2O5 ha-1 + 25 kg K2O ha-1 + 15 kg S ha-1 resulted in highest NUE. By the application of urea and gypsum, there was slight increase in the soil pH. After N and S application, there was increase in organic carbon content of the soil. At fifty per cent flowering all the nutrients showed an increase in availability and there was a decrease at the final harvest stage because of crop uptake and various losses. N application @ 110 kg ha-1 significantly increased the available N status in the soil. S application up to 20 kg ha-1 significantly increased the available P K and S content in soil. As the levels S increased, there was increase in the exchangeable calcium in soil. Higher levels of application of N recorded higher N content in both plant and fruit. Application of P and K at M2 (35 kg P2O5 ha-1 + 70 kg K2O ha-1) level significantly increased the content of P, K and Ca in plant and fruit. Increased S application increased the Ca content in plant since gypsum was used as the source of S. S application up to 20 kg ha-1 had significant influence on the fruit Ca and Mg concentration. The interactive effect of N and S was not significant in the case of S content in plant. But, N2S3 (N @ 80 kg ha-1 and S @ 20 kg ha-1) recorded the superior value. N application had got positive influence on the content of P, K, Ca, Mg and S in plant and fruit. By progressive increase in S application up to 20 kg ha-1and N application up to 80 kg ha-1, there was significant reduction in N: S ratio. N and S fertilization had significant influence on leaf chlorophyll content and application of 80 kg N ha-1, 35 kg P2O5 ha-1, 70 kg K2O ha-1 and 15 kg S ha-1 showed the superior value for chlorophyll content. An increasing trend was noticed with higher levels of N up to 80 kg ha-1 and S up to 20 kg ha-1. N and S application significantly enhanced the uptake of nutrients. Uptake of phosphorus, potassium, calcium, magnesium and S were highest when N, P, K and S were applied @ 80 kg N ha-1+ 35 kg P2O5 ha-1+ 70 kg K2O ha-1+ 20 kg S ha-1. N application @ 80 kg ha-1 significantly influenced the B: C ratio. Among the treatments M1N2S2 (80 kg N ha-1 + 8 kg P2O5 ha-1 + 25 kg K2O ha-1 + 15 kg S ha-1) which gave the highest yield showed the highest B: C ratio. Maximum B: C ratio was obtained when N and S were applied @ 80 kg ha-1 and 15 kg ha-1 respectively. As the levels of S increased, B: C ratio also increased. Fertilization of N, P, K and S @ 80 kg ha-1, 35 kg ha-1, 70 kg ha-1 and 15 kg ha-1 respectively recorded the minimum Percentage Disease Incidence (yellow vein mosaic). Among the treatments, yield, number of fruits per plant, N Use Efficiency and B: C ratio were highest for M1N2S2 (80 kg N ha-1 + 8 kg P2O5 ha-1 + 25 kg K2O ha-1 + 15 kg S ha-1) and it can be considered as the best treatment combination. Application of N significantly increased the yield and the yield was highest at N2 level (80 kg N ha-1). There was reduction in yield if we apply N @ 110 kg ha-1. By the application of S along with N increased the NUE and we can reduce the dose of N to 80 kg ha-1 instead of 110 kg N ha-1 for bhindi.
  • ThesisItemUnknown
    Physico-chemical properties of rain water harvested under different situations in lateritic
    (Department of soil science and agricultural chemistry, College of horticulture,Vellanikara, 2014) Ibrahim Hassen, Abdu; KAU; Betty Bastin
    Rain water harvesting is universally accepted as an important measure of water conservation throughout the world. The quality of irrigation water has become a more serious problem than quantity in different parts of the world. The characterization of quality of water is crucial for assessing the suitability for i rrigation. Hence a study was taken up on “Physico-chemical properties of rain water harvested under different situations in lateritic soil’’ in the main campus of Kerala Agricultural University, Vellanikkara during September, 2012 to August 2013. The objective of the study was to compare the physico-chemical properties of rain water from different water sources in lateritic soil. Water was collected from five sources viz, rainfall (RF), rain water harvesting pond (RWH) , Kotteppadom pond (KP), well water (W) and surface runoff (SR). The experiment for surface runoff study was laid out in an area with a gentle slope between 5 – 10 per cent . Four rain pits were dug in this area with dimensions of 0.5 m x 0.5 m x 0.5 m and lined by polyethene sheet. Water samples were taken from these water sources for one year at monthly intervals and they were analyzed for various physicochemical parameters such as colour, turbidity, pH, EC, TDS, COD, BOD, SAR, RSC, NO 3 - , Cl - and Fe. The amount and distribution of rainfall received as well as the inflow to the rain water harvesting pond were also studied. Soil samples were collected from around rain-pits before and after rains and analyzed for the content of nutrients. The total quantity of rainfall during the study period was 2872.0 mm. The maximum amount of rainfall was observed in June and the minimum in January, 2013. The amount of rain water harvested in pond during the study period was 625.48 m which comes to 63 per cent of its storage capacity. The quality of water from different sources was compared based on the results of physico-chemical analysis. It was found that pH was highest (6.69) for water from Kotteppadom pond during summer and lowest (5.54) for water from rainfall during post monsoon season. The EC and TDS values were maximum for well water during pre- monsoon season and there was significant difference among the different sources. There was no significant difference among the sources of water as regards the content of Cl and NO 3 - over the different seasons. The values for BOD and COD varied significantly over the different sources as also the seasons. Significant difference was observed for SAR and RSC values among the different sources and seasons. Loss of nutrients from soil via surface runoff from a sloppy area was studied. Soil samples were analyzed for various physico-chemical parameters such as pH, EC, OC, 3 available N, P, K, Ca, Mg, Fe, BD, PD and WHC. The different parameters were estimated both before and after receipt of rainfall. The mean values of these parameters and percent changes along with t-value were found out. During summer, after the rains, there were significant changes for the parameters like pH, OC, as well as available nutrients like K, Ca, Mg, Fe, and the percentages of decrease were 1.67, 0.67, 37.94, 25.46, 5.62 and 8.85 respectively. The water holding capacity was also decreased by 4.80 per cent. During monsoon, available nutrients like N, P, K, and WHC decreased to the extent of 23.68, 26.24, 49.32 and 7.29 per cent respectively. In general, it was found that the rainfall and rain water harvested in the water harvesting pond were superior to well water, KP pond water and surface run off water. Salinity was low for water from all the sources. Surface run off in an area with moderate slope (5-10 %) resulted in loss of nutrients like K, P, Mg and Ca. -
  • ThesisItemOpen Access
    Silicon and boron nutrition of rice (Oryza sativa L.) in wet land soils
    (Department of Soil Science and Agricultural Chemistry, College of Agriculture, Padannakkad, 2014) Sainath Nagula, KAU; Biju Joseph
    The experiment entitled “Silicon and boron nutrition of rice (Oryza sativa L.) in wet land soils of northern Kerala” was carried out to standardize the dose and method of application of silicon and boron to rice crop in paddy soils, to evaluate its effect on available nutrient status and yield and to study the effect of silicon in alleviating the toxicity of Fe, Mn and Al in laterite derived paddy soils. The treatments were a combination of boron source as borax (soil and foliar application) and silicon sources as calcium silicate (soil application) and potassium silicate (foliar application). Two experiments, a pot culture and a field experiment were conducted with rice variety Aishwarya as the test crop. Application of silicon and boron fertilizers improved the availability of silicon and boron in soil. Soil application of calcium silicate along with borax was superior in maintaining the available silicon and boron status of soil than foliar application of potassium silicate and borax. The study revealed that the application of silicon and boron as soil and foliar application had a synergistic effect on the availability of N, P, K, Ca, Mg, S, Zn and Cu in the soil. Application of silicon as foliar application of potassium silicate 0.5 % along with borax 0.5 % spray was effective in reducing iron toxicity in the soil while the use of calcium silicate 100 kg Si ha-1 and borax 10 kg ha-1 proved to be more effective in reducing manganese and aluminium toxicity in the soil. The content and uptake of N, P, K, Ca, Mg, and S in rice were significantly improved by the application of potassium silicate 0.5 % foliar spray along with borax 0.5 % spray 3 rounds. Foliar application of silicon and boron as potassium silicate 0.5 % spray and borax 0.5 % spray was more efficient on improving the content and uptake of silicon and boron compared to soil application of calcium silicate and borax. 141 Application of potassium silicate @ 0.5 % spray + borax 0.5 % spray 3 rounds was significantly superior with respect to yield and yield attributes of rice. In a nutshell, both the pot and field experiments clearly indicated that application of Si and B significantly improves the available nutrient status of soil, nutrient uptake, grain and straw yield of rice. Foliar application of potassium silicate and borax (0.5 % each) 3 rounds at 15 days interval significantly improved the available nutrient status of soil, yield and yield attributes of rice. It was also effective on alleviating toxicity of Fe, Mn and Al in laterite derived paddy soils
  • ThesisItemUnknown
    Long term effect of field management on soil quality in ultisol
    (Department of soil science and agricultural chemistry, College of Horticulture,Vellanikkara, 2013) Nithya, A M; KAU; Betty Bastin
    Soil quality is directly related to agricultural sustainability. Assessment of soil quality is essential for determining the sustainability of land management systems. It is generally accepted that intensive agricultural production leads to a decline in soil quality. For this reason, it is highly essential to monitor soil quality to avoid soil degradation and in doing so, preserve the production capabilities of the land and protect environment. The response of soils to management and input depends on soil quality. It is therefore important to identify the soil characteristics responsible for changes in soil quality, which may eventually be considered as soil quality indicators for assessing agricultural sustainability. The present investigation has been undertaken to study the “Long term effect of field management on soil quality in Ultisol”. It was conducted in the main campus of Kerala Agricultural University, Vellanikkara during December, 2012 to June, 2013. The objective of the study was to evaluate the soil quality under different long term field management conditions in an Ultisol (Vellanikkara series) based on physical, chemical and biological indicators. Here, an attempt has been made to evaluate the physical, chemical and biological properties of soil using available soil quality indicators. Five different fields were selected namely, natural forest, rubber plantation, cocoa garden, STCR experimental field and tapioca fields. Soil samples were collected from three depths namely 0-15 cm, 15-30 cm and 30-60 cm. The different sampling sites within each field were selected based on slope percentage. The samples were characterized for soil texture, aggregate size distribution, soil temperature, water holding capacity, single value constants, pH, EC CEC, AEC, SiO2/R2O3, organic carbon , lime requirement, available macronutrients, secondary nutrients, micronutrients, counts of bacteria, fungi and actinomycetes and enzyme activity. The sampling areas were also surveyed and documented for the presence of earthworms and termites. The physical characteristics like water holding capacity, soil aggregate stability and soil temperature showed a decreasing trend with depth in the different fields. Forest ecosystem showed the most conducive physical characteristics followed by cocoa and rubber. The contents of available nutrients, secondary nutrients and micronutrients were found to be the highest in surface samples. The forest ecosystem showed relatively high values for organic carbon, and available nutrients like nitrogen, sulphur, boron, iron, manganese, zinc and copper. Microbial activity was found to be the highest in surface soils in almost all fields. The highest counts of bacteria and actinomycetes were reported in forest ecosystem and lowest in tapioca field. Fungal activity was found to be the highest in cocoa field followed by forest ecosystem. Enzyme activity was also found to be the highest in surface soils in the different fields. Soil quality was evaluated using available soil quality indicators. Based on scoring with the soil quality parameters, the highest scoring was observed for natural forest followed by cocoa field. Correlations between various soil quality parameters of different fields were also worked out. .