Loading...
Thumbnail Image

Kerala Agricultural University, Thrissur

The history of agricultural education in Kerala can be traced back to the year 1896 when a scheme was evolved in the erstwhile Travancore State to train a few young men in scientific agriculture at the Demonstration Farm, Karamana, Thiruvananthapuram, presently, the Cropping Systems Research Centre under Kerala Agricultural University. Agriculture was introduced as an optional subject in the middle school classes in the State in 1922 when an Agricultural Middle School was started at Aluva, Ernakulam District. The popularity and usefulness of this school led to the starting of similar institutions at Kottarakkara and Konni in 1928 and 1931 respectively. Agriculture was later introduced as an optional subject for Intermediate Course in 1953. In 1955, the erstwhile Government of Travancore-Cochin started the Agricultural College and Research Institute at Vellayani, Thiruvananthapuram and the College of Veterinary and Animal Sciences at Mannuthy, Thrissur for imparting higher education in agricultural and veterinary sciences, respectively. These institutions were brought under the direct administrative control of the Department of Agriculture and the Department of Animal Husbandry, respectively. With the formation of Kerala State in 1956, these two colleges were affiliated to the University of Kerala. The post-graduate programmes leading to M.Sc. (Ag), M.V.Sc. and Ph.D. degrees were started in 1961, 1962 and 1965 respectively. On the recommendation of the Second National Education Commission (1964-66) headed by Dr. D.S. Kothari, the then Chairman of the University Grants Commission, one Agricultural University in each State was established. The State Agricultural Universities (SAUs) were established in India as an integral part of the National Agricultural Research System to give the much needed impetus to Agriculture Education and Research in the Country. As a result the Kerala Agricultural University (KAU) was established on 24th February 1971 by virtue of the Act 33 of 1971 and started functioning on 1st February 1972. The Kerala Agricultural University is the 15th in the series of the SAUs. In accordance with the provisions of KAU Act of 1971, the Agricultural College and Research Institute at Vellayani, and the College of Veterinary and Animal Sciences, Mannuthy, were brought under the Kerala Agricultural University. In addition, twenty one agricultural and animal husbandry research stations were also transferred to the KAU for taking up research and extension programmes on various crops, animals, birds, etc. During 2011, Kerala Agricultural University was trifurcated into Kerala Veterinary and Animal Sciences University (KVASU), Kerala University of Fisheries and Ocean Studies (KUFOS) and Kerala Agricultural University (KAU). Now the University has seven colleges (four Agriculture, one Agricultural Engineering, one Forestry, one Co-operation Banking & Management), six RARSs, seven KVKs, 15 Research Stations and 16 Research and Extension Units under the faculties of Agriculture, Agricultural Engineering and Forestry. In addition, one Academy on Climate Change Adaptation and one Institute of Agricultural Technology offering M.Sc. (Integrated) Climate Change Adaptation and Diploma in Agricultural Sciences respectively are also functioning in Kerala Agricultural University.

Browse

Search Results

Now showing 1 - 9 of 63
  • ThesisItemOpen Access
    Comparative micromorphologial and physico- chemical study of the upland and midupland laterite soils of Kerala
    (Department of soil science and agricultural chemistry, College of Agriculture, Vellayani, 1986) Sankarankutty Nair, R; KAU; Aiyer, R S
  • ThesisItemOpen Access
    Nutrient dynamics if the rice based cropping systems
    (Department of Soil Science and Agricultural Chemistry, College of Agriculture, Vellayani, 1989) Sundaresam, Nair C.; Subromonia, Aiyer, R
  • ThesisItemOpen Access
    Exchangeable aluminium as an index of liming for the acidic upland soils of Kerala
    (Department of soil science and agricultural chemistry, College of Agriculture, Vellayani, 1987) Meena, K; KAU; Alice, Abraham
    Aluminium toxicity is the major factor limiting crop production in the acidic soils and the usual practice of alleviating aluminium toxicity is liming* / The present investigation was carried out to find out the distribution of water s dluhle and exchangeable aluminium in the acidic upland soils of Kerala and to test the suitability of exchangeable aluminium as an index for liming them* It was further programmed to find out the growth, yield and nutrient uptake pattern of two acid sensitive crops namely cowpea and fodder maize in soils under different levels of exchangeable aluminium brought out by the use of different levels of lime* Chemical analysis of eighty soil samples representing the five major upland soil types of Kerala viz* laterlte, alluvial, red loam, sandy and forest a oil have indicated the highest amount of exchangeable aluminium and percentage aluminium saturation in the laterite soils* The soil with 3 high level of exchangeable aluminium and percentage aluminium saturation was selected for conducting a pot culture experiment to test the suitability of using exchangeable aluminium as an index of liming* The exchangeable aluminium content of this soil was maintained at different levels by applying different levels of lime and the performance of these crops in this soil was compared by making biometric observations and by chemically analysing plant and soil samples* From the results of the study it was seen that higher levels of exchangeable aluminium adversely affected the growth, yield and nutrient uptake In cowpea and fodder maize* Maintenance of exchangeable aluminium at 1*26 me/100 g with a corresponding percentage aluminium saturation valua of around 30, by the use of 500 kg lime/ha appeared to be the optimum for maximising the yield of cowpea* But in fodder maize this level of lime was found to be insufficient and complete elimination of aluminium toxicity appeared to be essential for maximising production* Since the critical levels of exchangeable aiuainiua appears to be different for different crop3, it is desirable that lias levels to reduce exchangeable aluminium to such a critical level alono be applied. The results of the present study thus point to the advantage in adopting the exchangeable aluminium level of soil as a better index of liming for various crops grown in the upland acidic soils of Kerala.
  • ThesisItemOpen Access
    Effect of submergence on the soil testing parameters of paddy soils
    (Department of soil Science and Agricultural Chemistry, College of Agriculture, Vellayani., 1986) Usha, Mathew; Alice, Abraham
  • ThesisItemOpen Access
    Factors governing response of rice to liming in Kerala soils
    (Department of soil science and Agricultural chemistry, College of Agriculture Vallayani , Trivandrum, 1986) Mary Kutty, K C; KAU; Subramania Aiyer, R
    A study has been conducted on the factors governing response of rice to liming in Kerala soils with a view to evolve suitable coliorative measures. A five pronged approach to the studies made are highlighted to enable a clear understanding of achievements as against the objectives and approaches made. A laboratory study with one hundred soil samples to assess the nature of acidity of four major rlce growing tracts of Kerala State viz.,Kuttanad, pokali, kole and latoritic alluvium has been carried out. The kuttanad soil lncludes karl, karapadon and kayal lands. Path coefficient anaysis of important fifteen acidity contributing factors against seven parameters for measurement of soil acidity and the inter-relation ships of 22 soil characters show that aluminium saturation of effective CEC is the best parameter for measurement of soil acidity. karapadon and hoyol land3. Path coefficient analysis of Important flftaon acidity contributing factors against seven parameters for racasurcsnont of soil acidity and tho intor-rclationahlpo of 22 soil characters show that aluminium saturation of effective CEG Is tho boot parameter for measurement of soil acidity. '*’*** fifteen factors ldontlflod as proton sources .ooount tor 95.9 por oont of th. mo.ourom.nt. vaulting th. 00. hundnd «il “ "P1” « • 9rOUp*S * pPln0lp*1 . —a erne seven clusters ire formed. This goipaMnt H ^ appliaatlan of prinoip.1 l» a probably th. ur district could however bo grouped together In a cluster with a range of aluminium saturation of effective CBC 70# 1 to 75,0 per cent. The fourth and fifth clusters °f soils studied except the kari soil and having tioir aluminium saturation of effective CCC in tho range of 40.1 to 70.0 por cent. Tho kayal soils of Kuttanad, poWcali and lstsritlc alluvium find a placo in tho sixth cluster with an aluminium saturation of effective CCC in tho range of 30.1 to 40.0 ~jCr cent. The seventh cluster nalnly of lateritic alluvium and a few loss acidic pokkali soils has aluminium saturation of effective CtC below 30.0 per cent. A pot cult ire experiment has been conductod in a highly acid soil hnri s o il o f Kuttanad having tho pH values 3.5 with 39 rico variotioo In or.lor to ocroon out a variety tolorant to acidity. Tho varlotlon hovo boon acroonod £or toloranco to acidltyunlng th. method of D2-0tatloticn. nolocting tho impor- , „h,.a throo cluotoro ora formed. Thoy hova tant character, ano . . flB toiorwit. tedium tolorant boon oharactori«od a and l.aat tolaa th. tolarant varlotl.. Jyothi variety acidity. ****** ^ .jvoc.cy of a p M of ia ranWd t *• • r method, of managmant ..... oowblnlng v.ri.ty 1 including lining and v»»vn>«ing for obtaining better productivity m hl3hly ^ soils of k« . u . liming la a hydro-an\eliorativo process, a pot culeKperlnon,. has been carried out to otudy the effect of 3 -eto^iaia coupled with washing with different levels of water and periods between washing in two highly acid soils. The fact that washing the ooil two or throe tinvas at an interval of 2 days maintaining 10 can water from tlio ooil surface after the application oa lino lu noro efficient often yielding better rerulta with a lower Lining done will certainly make the use of l-inin'1 materials in the management of acid soiis An economic promoaition. This further orroloins the preference for low rates L i •- *- of llmln already acca. tod try farm ra in Kuttanad in spite of oonorve 1 Lae"", of rosoon.sG to li.nin , in resGoj-cn st itions, where tho s o ils ire r.uc.i lesn acid than those confronted in cultivator’s f i e ld a. *, o t cult iroa»no?l.jant hao ixi'.n conducted to otudy tho ff o ' graded lovolo of lining (on dry and wot noli baoio) isingj tiio non'. tr- ,*l-rant vori ty in lour major ncld rlao noil ypon suc„h a-nn Lat-rltic alluvium, Uolo, i»kl;ali and tori soils (,.o f i r s t crop and tho subsequent thrco crons roo:>octivoly. Ml the ros >onso functions fittod hava l>oan in quadratic rxxlol .jcoopt those Involving lo t o r lt ic alluvium. in tolo soil. ti.o residual a££oct o£ limine, io much in , , in tho nocond succeeding avidence only m ^ crop.aCtor which a drastic decrease In ,y#i4enlldd has boon obtained. In th« case of __ r•siflual offoot, however, has been pronounce poWcali no . ^ crop8. In kari soil, th. maximum yl.ld In the second ^ ^ fcha ,uphoat rats of liming nor as could not be obta^ ^ for r.^du.1 effsct.. Th. r.al- • o o n s s ' j u e n o . , r a p i d l y b y t h . .M o n d o r o p dual »PP“ In the case of laterltic alluvium9 application of lime maximum ever* the yield decreases significantly and rapidly. Response functions for the first and second crops could not be worked out. This indicates that tho maximum yiold might have been attained at a lovol of liming bo low 1/4 La doso. However* for the third and fourth crops, at tho rate of liming tried, a quadratic residual response function could bo fitted. Tho results on residual effect of lime hnvo alco shown that higher rates of lirr.e application introduces problems of roacidification at a faster rate. Tho depressive effects of line at higher rate are again a pointer to the need to ac opt low lining rates ;?ut ’./ith frequent applications
  • ThesisItemOpen Access
    Influence of applied nutrients and stage of harvest on the yield and physicochemical properties of essential oil of palmarosa (Cymbopogon martini Stapf var. motia)
    (Department of Soil Science and Agricultural Chemistry , College of Agriculture, Vellayani, Trivandrum, 1985) Chinnamma, N P; KAU; Aiyer, R S
    Palmarosa, an essential oil crop introduced in Kerala, from Maharashtra, nearly two decades ago, is spreading steadily la the pialas and midland regions of North Kerala. Several agro-techniques have yet to he standardised for the commercial cultivation of this crop in the State. The present studies were undertaken at the Aromatic pnfl Medicinal Plante Research Station, Odakkaly during 1980-'8 4 to obtain information on the nutrition of palmarosa, optimum harvest intervals to ensure maximum herbage and oil yields and the factors influencing the quality of oil. The treatments in the major field experiment (1980-'82) consisted of three levels of N, and KgO, each at 25, 50 And 75 kg/ha along with six intervals of harvest at 40, 45, 50, 55, 60 and 65 days. The total number of treatment combinations wore 162 in a 3^ x 6 confounded asymmetrical factorial design. Tho main experiment was continued for another two yoaro limiting tho observations, to the yield of herbage and oil. This was then followed by an observation trial with intervals of harvest longer than tho maximum of 65 doye tried in the main experiment. In the main experiment the herbage yield vns significantly increased by application of P2°5 ^2°* Nitrogen did not have any eignifioant offeot on herbage yield poaeibly due to tha medium level etatua of soil N in the ABSTRACT ^erimental plots. The oil yield was Bignifioantly enhanced by P205 application at 50 kg/ha. Different levels and K showed no significant influence on the yield of oil. Harvest intervals showed significant influence on herbage yield, oil yield and oil content and the maximum value was recorded by the 65 day interval. A path analysis of the herbage yield with related cnaracters has shown that the height of the plant is the most important yield attribute influencing directly the yield of herbage. Path analysis of oil yield showed that oil yield is mainly dependent upon herbage yield. The direct effects on oil yield by yield attributes are found to be in the decreasing order of number of tillers with inflorescence, height of the plants and length of inflorescenoe. Maximum indirect affect via herbage yield is expressed by the height of the plant and length of inflorescence. All these directly and indirectly contributing factors arc soon to be markedly influenced by tho applioation of phosphorus and intervals of harvoat* Herbage yield and oil yield for various harvest lntorvalo obtained In the flrot two years wore fit tod In a Cobb-Dcughlua reoponoo function and tha expooted values «leulat«d were found to be very olooe to tho actual observed values• In thethird and fourth year of the experiment, the ghest herbage and oil yields were recorded by 60 day interval followed by the interval of 65 days, A quadratic Sanction for the data pooled over for four years was fitted to see if the data show a diminishing return with an increase in harvest interval and it was found that the optimum herbage yield and oil yield were obtained when the harvest was done at 62 and 63 days interval respectively. The final observational trial also indicated that the herbage and oil yields were maximum for a harvest interval of 65 days beyond which it decreases. Increase in the levels of both N and P tended to increase the content of geraniol and to decrease the content of geranyl acetate which are the price determining quality attributes of the essential oil. But the maximum interval of harvest viz., 65 days tried in the main experiment was not sufficient for moot of the physico-chemical properties of oil ouoh os specific gravity, refractive index, geraniol content, geranyl acotato content etc. to reach the minimum limit prescribed by 131. The observational trial showed that the oil obtained at intervale of 95 days and above satisfied the 131 specification with respect to all the phyalco-ohemioal properties of the oil. However, at thle herveat Interval the yield Itself wae considerably depressed compared to the yield at 65 day Interval. Th, eoonomloe worked out for different Intervale of harveab baaed on the ourrant market prloe of the oil paeein« as above the I SI limits as fe. 240/- per kg (oil from harvest intervals at and above 95 days) and those below them at Fs.220/- per kg (oil from harvest intervals of 55, 65, 75 and 85 days) it has been found that a wider cost benefit ratio and net return per rupee investment are obtainable for harvest intervals ranging from 65 to 85 days. However, 65 day interval has the advantage of early returns from the investment. Application of 50 kg PgO^/ha in view of its significant effect on herbage yield, oil yield and oil quality increase the net profit per rupee invested for the harvest interval of 65 days. The average removal o f II, P, K, Ca and Mg from the s o i l by palmarosa per h ecta re per year lias a lso been worked o u t . The optimum f e r t i l i s e r le v e l fo r palmarosa i s 25 kg II, 50 kg P?05 and 25 kg K20 per h ectare over an a p p lic a tio n o f spent g ra ss at 5 tonnes per h ectare per y e a r . The optimum h arvest in to r v a l i s 65 days. TIiIb would give maximum horbago y io ld , o i l y io ld ond ea rly return from in v e stm e n ts.
  • ThesisItemOpen Access
    Impact of eucalyptus and acacia plantations on soil properties in different pedogenic environments in Kerala
    (Department of Soil Science and Agricultural Chemistry, College of Agriculture, Vellayani, 1989) Byju, G; KAU; Thomas, Varghese
    Eucalyptus tereticornis and Acacia Auriculiformis are two important exotic tree species introduced into our environment through National Social Forestry programme. These two species are said to have many qualities which qualify them for inclusion under the social forestry programme. These fast growing tree species have the unique capability of surviving and regulating their growth to prevailing growth factors. But environmentalists in India and abroad have questioned the feasibility of bringing fertile lands under these exotic species which they claim to have deleterious impact on soil properties, hydrological parameters, biotic associations and long-term socio-economic consequences. However, these arguments do not have a sound scientific basis due to lack of sufficient research data base. So a study was undertaken to find out the impact of these monoculture plantations on soil properties in different pedogenic environments in kerala. Soil profiles were taken from four locations representing different geoclimatic regions of Kerala. The locations were Wynad (Northern forested highland), Kottoor (Southern forested highland), Nileswar (Northern coastal) and Kazhakkoottam (Southern coastal). Altogether thirteen pedons were studied from different locations representing reserve forest, cultivated land, barrenland, Eucaiyptus plantation and Acacia plantation. Pedons were described systematically and subjected to physico-chemical analyses and also for assessing the extent and nature of microflora. Biomass studies and chemical analyses of plant samples have alsobeen undertaken. From the studies, it was revealed that monoculture plantations of Eucalyptus and Acacia have got deleterious impact on soil physical, chemical and biological characteristics. These deleterious effects were more in a forest environment compared to sandy tracts. Increase in gravel content, eluviation of clay, lower silt/clay ratio, increase in bulk density, lower water holding capacity, low moisture content and low water dispersible clay in soils under Eucalyptus in forest areas show that the process of ferrallitisation and soil degradation proceed faster under Eucalyptus. Chemical composition also showed decrease in soil fertility under Eucalyptus. In the sandy tracts, Eucalyptus and Acacia increased the soil organic matter, total nitrogen and available potassium, while almost all other parameters used for the study showed deleterious effects. Active iron ratio (Fe oxalate/ Fe dithionite) was calculated to assess the extent of induration and the results indicated a relative enrichment of crystalline iron oxides in monoculture plantations of Eucalyptus and Acacia which may also lead to induration. A decrease in microbial population was also observed in these plantations except the population of Rhozobium whose number increased in plantations of Acacia which is a leguminous tree. The above results indicated that planting of Eucalyptus and Acacia as monoculture has got very deleterious impact on soil characteristics and fertility . All these throw light on the imminent necessity to have a rethinking about the introduction of monoculture plantations with these exotic species especially in the reserve forest areas.
  • ThesisItemOpen Access
    Nitrogen losses from the rice soils of Kerala with special reference to ammonia volatilization
    (Department of Soil Science and Agricultural Chemistry, College of Horticulture, Vellanikkara, 1989) Anila Kumar, K; KAU; Rajaram, K P
    In order to get a deeper insight in to the N dynamics of selected submerged rice soils, an investigation entitled “Nitrogen losses from the rice soils of Kerala with special reference to ammonia volatilization” was carried at the Regional Agricultural Research Station, Pattambi during 1985 – 87 with the following objectives. 1. To estimate the magnitude of ammonia volatilization losses from submerged rice soils, representing major rice growing tracts of Kerala. 2. To study the factors which are responsible for accelerating the rate of ammonia volatilization under flooded soil conditions. 3. To evaluate the effect of submergence, organic matter application, complementary effect of P and K on ammonia volatilization from the rice soil ecosystem. 4. To identity suitable N carriers capable of reducing the loss of N due to ammonia volatilization from submerged paddy soils. 5. To find out the effect of continuous application of organic and inorganic manures in lateritic submerged paddy soils on the quantum of N loss through ammonia volatilization. 6. To find out the transformations and extent of mineralization of applied urea. With these objectives, in view, a serious of laboratory incubation studies, followed by pot culture trials were carried out and the results were finally verified under field experiment also. Besides these, the plots of permanent manorial trial (dwarf indica) were utilized for estimating the N loss through ammonia volatilization on long term application of organic manures and inorganic fertilizers. In the incubation study for estimating the magnitude of N loss though ammonia volatilization, eight rice soils of kerala viz., sandy, karapadam, kayal, kari, pokkali, kole, poonthalpadam and laterite soils representing the major rice growing tracts of Kerala were incubated with no N and 27 g N m-2 as urea. Air train and acid trapping device was utilized to collect the volatilized ammonia. The results showed that sandy soil collected from Onattukara region registered an increased N loss through ammonia volatilization, whereas in the kole soil of kattukampal, the process was retarded to the lowest level. More than 75 per cent of the volatilization loss was observed within 9 days after urea application. Significant negative correlation was observed between ammonia volatilization and organic matter content, clay fraction and cation exchange capacity of the soil, whereas the coarse sand fraction showed significant positive correlation. Soil sterilization had little influence on ammonia volatilization in any of the soil under study. Another incubation study to assess the impact of quantity of urea applied on the quantum of N loss through ammonia volatilization was carried out using four soil types (sandy, kayal, poonthlpadam and laterite soils) with four rates of N application (9, 18, 27 and 36 g N m-2 ). The results indicated that the N loss through ammonia volatilization had a positive relationship with increased rates of urea application, though not linear. The complementary effect of phosphorus and potassium on the extended loss of N through ammonia volatilization was estimated in another incubation study utilizing the same four soil types with treatment as N alone, N and P, N and K and N, P, K @ 27:13.5:13.5 g N, P, K m-2 respectively as urea, superphosphate and muriate of potash. The results revealed that combind application of urea and muriate of potash was found to be significantly better in reducing the volatilization loss to be significantly better in reducing the volatilization loss of ammonia compared to the treatments, N alone and N and P. The incubation study to find out the influence of depth of submergence on the rate of volatilization of ammonia was conducted using the same soil types and four treatments (soil saturation, 5,10 and 20 cm submergence). The results showed that the soil samples maintained at saturation point recorded double the values for ammonia volatilization, compared to samples kept under submergence of 20 cm depth. The effect of application of organic matter on N loss through ammonia volatilization was studied in the same four soil types with the treatments as no organic matter, 0.25, 0.50, 0.75 kg organic matter m-2 as farm yard manure. The results indicated that application of organic matter was found to reduce volatilization losses considerably in all the soils studied and the lowest value recorded was for the treatment receiving farm yard manure @ 0.75 kg m-2. The relationship between N sources and the extent of volatilization of ammonia was investigated in another incubation study employing the same four soil types and ten different N carriers to supply 27 g N m-2. The relative efficiency of different N carriers in reducing the ammonia volatilization loss was in the order sulphur coated urea > urea mudball > gypsum coated urea > rock phosphate coated urea = neem cake coated urea = ammonium sulphate = ammonium chloride > urea : coconut pith: soil = urea. The pot culture study to trace the pathway of transformation and extent of mineralisation of urea under flooded soil condition consisted of three soil types (laterite, kari and poonthalpadam soil) and two levels of N (no N and 90 kg N ha-1 as urea). The rate of mineralisation of applied urea followed the soil reaction and the mineralisation stopped at the stage of NH+4 formation and hence chances of N loss through denitrification is meagre, unless the soil is aerobic. The second pot culture experiment was conducted with a view to identify the different ways that result in minimum loss of N through ammonia volatilization in sandy and laterite soils. The study showed that the decreasing order of N loss through ammonia volatalization from different N carriers followed the order, urea basal = urea; coconut pith: soil = coaltar coated urea = gypsum coated urea = rock phosphate > coated urea > urea split > urea super granule > urea mudball > sulphur coated urea. The five treatments selected from this experiments viz., urea split, urea mudball, urea super granule, gypsum coated urea and rock phosphate coated urea on reduced ammonia volatilization and high grain yield were compared in another pot culture trial and finally it was verified under field experiments in trial and finally it was verified under field experiments in laterite soil. The results revealed that urea mudball placement in the anaerobic layer of soil was found to reduce the n loss through ammonia volatilization to negligible level. Treatments with surface application of rock phosphate coated urea and urea in split dose ranked second and third position respectively in reducing the volatilization losses. Treatment receiving split application (top dressing of urea at 20 and 40 DAT) reduced ammonia volatilization considerably. Significant positive correlation was found between the cumulative N loss through ammonia volatilization and flood water pH measured at 0800 hrs and 1400 hrs, flood water NH4 – N content and flood water bicarbonate content. The pH of flood water measured at 1400 hrs were significantly higher than the value recorded at 0800 hrs and highest diurnal variation was observed for treatment with urea super granule deep placement. The urea super granule deep placement treatment resulted in increased grain yield in both the pot culture trials and field experiment. However, in field experiment the effect of different N carriers on grain yield was found to be uniform. The periodical N uptake by plants as well as N accumulation in grain and straw at harvest were found to be higher in the case of treatments receiving USG deep placement and urea split application. The effect of long term application of organic and inorganic nitrogen sources in soil on the rate of n lose through ammonia volatilization was studied utilizing the permanent manorial experiments. Plots receiving combined application of cattle manure + green leaves + NPK @ 45:45:45 kg N, P2 o5, K2 o as ammonium sulphate, super phosphate and muriate of potash were recorded the lowest value of n loss via ammonia volatilization when compared to other treatment plots.
  • ThesisItemOpen Access
    Nutrient dynamics in the rice based cropping systems
    (Division of Soil Science and Agricultural Chemistry, College of Agriculture, Vellayani, 1989) Sundaresan Nair, C; KAU; Subramonia Aiyer, R
    The experiment consisting of five cropping sequences viz. rice - rice – rice (A1), sweet potato – rice – rice (A2) cowpea – rice – rice (A3) daincha – rice – rice (A4) and fallow – rice – rice (A5) and six treatments with varying doses of N P and K were conducted to study the performance of the sequences in relation to the nutrients required for optimising the out put from the sequences. The field experiment was laid out at R.R.S., Pattambi in 1980 – 81 and the experiment was conducted for two consecutive years ie. For six seasons. The experiment was started with the summer crop of 1981, namely summer rice (Triveni), sweet potato, cowpea, daincha and a summer fallow wherein the land was ploughed twice and left as such without any crops. The component crops were raised with five treatment variations modified from the recommended doses for each crop. The biometric observations for the summer crops, virippu and mundakan crops were recorded. The indications were that treatments have a significant effect on summer crops virippu and mundakan rice crops of 1981 and 1982. The yield shows that both treatments and sequences have a significant effect. The sequence daincha – rice – rice and the cowpea – rice – rice sequence gave the highest yield. The chemical analyses of plant parts of the summer crops, virippu and mundakan rice crops of both 1981 and 1982 show that the treatments have no effect on the NPK content. The soil study shows that the cropping sequences have a significant effect on soil pH. A pH decrease was noticed in all the sequences, the highest decrease being in the rice – rice – rice sequence. The organic carbon level of the soil is also affected due to the cropping sequence. The rice – rice – rice sequence shows a maximum decrease in organic carbon level and the daincha – rice – rice – rice shows a gain in organic carbon level of the soil. The total nitrogen of the soil shows a decrease in all the sequences and maximum decrease was noticed in sweet potato – rice – rice sequence. The available nitrogen level also was influence both by the sequences and treatments. A decrease in available nitrogen was noted to be a maximum in the rice – rice – rice sequence. The total P and available P levels show an increase in all the sequences and were high in daincha – rice – rice and cowpea – rice – rice sequences. The treatments also have a significant effect in maintain the P level in soils. The total K status of the soil as well as the exchangeable status of K shows a decrease after two year of cropping. The nutrient uptake studies reveal that the maximum NPK uptake takes place in the sequences sweet potato – rice – rice followed by rice – rice – rice and cowpea- rice – rice – rice followed by rice – rice – rice and cowpea - rice – rice. The balance sheet of nutrients reveals that nitrogen and available phosphorus in all sequences show a decrease and increases with decrease in fertilizer levels. The balance sheet of K shows that the soil maintains K levels. The sequence daincha – rice – rice is the best in maintaining a high K status in the soil. An analysis of the economics of cropping sequences reveal that the sequence sweet potato – rice – rice with full recommended dose of fertilizers gave the highest net return, which was followed by Cowpea in – rice – rice and rice – rice – rice. From nutrient balance studies, yield and economic analysis it is clear that any attempt in reducing the quantity of fertilizer for the component crops of the sequences affects the yield, besides deleteriously affecting the fertility of the soils. Any decrease in the fertilizer doses in the sequences will not be economical. With a long range view of enhancing crop output from cropping sequences and maintaining soil fertility, it becomes necessary to enhance and maintain higher fertility levels.