Loading...
Thumbnail Image

Kerala Agricultural University, Thrissur

The history of agricultural education in Kerala can be traced back to the year 1896 when a scheme was evolved in the erstwhile Travancore State to train a few young men in scientific agriculture at the Demonstration Farm, Karamana, Thiruvananthapuram, presently, the Cropping Systems Research Centre under Kerala Agricultural University. Agriculture was introduced as an optional subject in the middle school classes in the State in 1922 when an Agricultural Middle School was started at Aluva, Ernakulam District. The popularity and usefulness of this school led to the starting of similar institutions at Kottarakkara and Konni in 1928 and 1931 respectively. Agriculture was later introduced as an optional subject for Intermediate Course in 1953. In 1955, the erstwhile Government of Travancore-Cochin started the Agricultural College and Research Institute at Vellayani, Thiruvananthapuram and the College of Veterinary and Animal Sciences at Mannuthy, Thrissur for imparting higher education in agricultural and veterinary sciences, respectively. These institutions were brought under the direct administrative control of the Department of Agriculture and the Department of Animal Husbandry, respectively. With the formation of Kerala State in 1956, these two colleges were affiliated to the University of Kerala. The post-graduate programmes leading to M.Sc. (Ag), M.V.Sc. and Ph.D. degrees were started in 1961, 1962 and 1965 respectively. On the recommendation of the Second National Education Commission (1964-66) headed by Dr. D.S. Kothari, the then Chairman of the University Grants Commission, one Agricultural University in each State was established. The State Agricultural Universities (SAUs) were established in India as an integral part of the National Agricultural Research System to give the much needed impetus to Agriculture Education and Research in the Country. As a result the Kerala Agricultural University (KAU) was established on 24th February 1971 by virtue of the Act 33 of 1971 and started functioning on 1st February 1972. The Kerala Agricultural University is the 15th in the series of the SAUs. In accordance with the provisions of KAU Act of 1971, the Agricultural College and Research Institute at Vellayani, and the College of Veterinary and Animal Sciences, Mannuthy, were brought under the Kerala Agricultural University. In addition, twenty one agricultural and animal husbandry research stations were also transferred to the KAU for taking up research and extension programmes on various crops, animals, birds, etc. During 2011, Kerala Agricultural University was trifurcated into Kerala Veterinary and Animal Sciences University (KVASU), Kerala University of Fisheries and Ocean Studies (KUFOS) and Kerala Agricultural University (KAU). Now the University has seven colleges (four Agriculture, one Agricultural Engineering, one Forestry, one Co-operation Banking & Management), six RARSs, seven KVKs, 15 Research Stations and 16 Research and Extension Units under the faculties of Agriculture, Agricultural Engineering and Forestry. In addition, one Academy on Climate Change Adaptation and one Institute of Agricultural Technology offering M.Sc. (Integrated) Climate Change Adaptation and Diploma in Agricultural Sciences respectively are also functioning in Kerala Agricultural University.

Browse

Search Results

Now showing 1 - 9 of 23
  • ThesisItemOpen Access
    Biomass production and root distribution pattern of selected fast growing multi-purpose tree species
    (Department of Silviculture and Agroforestry, College of Forestry,Vellanikkara, 1994) Jamaludheen, V; KAU; Mohankumar, B
    A randomized block design experiment involving nine fast growing multi – purpose trees (Acacia auriculiformis A. Cunn. ex Benth., Casuarina equisetifolia J.R. & G Forst., Leucaena leucocephala (Lamk.) de wit. Var. K 8, Ailanthus triphysa (Dennst.) Alston, Emblica officinalis Gaertn, Artocarpus heterophyllus Lamk., Pterocarpus marsupium Roxb., Paraserianthes falcataria (L.) Neilson and Artocarpus hirsutus Lamk.) Initiated during June, 1985 was used for the present investigations. The objectives of the study included quantifying the biomass production potential of nine selected fast growing multi-purpose tree species grown under short rotation intensive cultural systems; characterising the root distribution pattern of these trees and also elucidating the extent of nutrient loss through harvest, besides characterising litter dynamics. Acacia and paraserianthes recorded the highest growth rates in terms of height, radial growth and biomass yield. Biomass production decreased in the order: Acacia > Paraserianthes > Casuarina > A. heterophullus > Emblica Pterocarpus > A. hisrsutus > Ailanthus > Leucaena. The most important component of total biomass undoubtedly, was the bole while foliage contributed least to biomass yield. Nevertheless foliage, in general registered the highest N, and K contents. Among the species, Leucaena had the highest N concentration followed by Paraserianthes and Pterocarpus. For P and K concentrations, Pterocarpus and A. hirsutus registered the highest concentration. A one – to – one correspondence between nutrient accumulation and biomass yield was however, lacking because of wide variations in elemental concentrations among species and also among tissue types. Bole fractions, in general, did not account for more than 50 % of total nutrient export from site. Altering the rate of nutrient removal in products is one of the most important design criteria in planning for sustainable plantion. N-fixing tree plots generally had a higher soil N status. Casuarina, Emblica and Pterocarpus plots were having higher P levels. Acacia, Paraserianthes and A. hisrsutus plots registered markedly higher K level. The amount of litterfall was maximum for Acacia and the minimum for Pterocarpus. Litterfall also followed a unimodal distribution pattern with a distinct peak during the November – January period and the period of lean fall was during May-August. Litter dynamics accounted for bulk of the nutrient inputs into the system. The retranslocation of mineral nutrients from senescing leaves to younger leaves and /or other tissues prior to abscission was obvious. Leucaena, Paraserianthes, Pterocarpus, Acacia, Alinathus and Emblica formed examples of high (> 1.5%) detrital N content. Generally the wet period (June – August) was characterised by increased concentration of N in litter. Litter P did not follow a consistent pattern with respect to seasons. However, a characteristic decline in litter K concentration was noticed during the rainy season. Mass disappearance of litter samples followed a negative expontential relationship. Leucaena litter, having the highest initial N content, decomposed compeletely in the shortest period (9 months). Root system studies suggest that A. hetrophyllus, Emblica and Paraserianthes are perhaps unsuitable for intensive mixing and close planting in agroforestry as they possess shallow and highly spreading root system. Ailanthus is perhaps a better candidate species for the above purpose as it possess relatively lower lateral root spread and at the same time having a deep tap root system. Root activity paatern of Artocarpus hisrsutus revealed that more than 75% of fine roots responsible for water nutrient absorption is concentrated in the 75 cm radius around the base of the tree. Recovery of 32P declined as depth of application increased. The combination of lowest lateral distance (75 cm) and depth (30 cm) accounted for more than 30% root activity.
  • ThesisItemOpen Access
    Nutritional defficiency symptoms of teak (Tectona grandis Linn. F )seedling
    (Department of Silviculture and Agroforestry, College of Forestry,Vellanikkara, 1997) Viju Varghese, KAU; Gopikumar, K
    Sand culture studies were conducted in College of Forestry, Kerala Agricultural University, Vellanikkara, Thrissur with an objective of inducing the symptoms of deficiency of various nutrient elements in seedlings of teak (Tectona grandis Linn.f.) grown in sand culture. The effects of nutrients viz., N,P,K, Mg,S,Zn and Mo on the growth, chlorophyll content and nutrient concentration of seedlings in the nursery were also studied. The results were finally confirmed by recovery studies by supplying the seedlings showing the symptoms of deficiency of various elements with complete nutrient solution. For the study, two months old seedlings of uniform growth were planted in containers filled with pure quartz sand and supplied with Hoagland No. 2 (1948) nutrient solution. The treatment solution was prepared by eliminating the desired nutrient from the complete Hoagland nutrient solution. The characteristic deficiency symptoms produced by seedlings due to the deficiency of various nutrient elements include leaf discolouration, necrosis, scorching, defoliation and growth stunting. The seedlings showing visual deficiency symptoms were also photographed. Seedlings that received complete nutrient solution were healthy with dark green foliage. Vegetative growth of the seedlings was also found to be affected due to the nutrient stress. All the fractions of chlorophyll ie; chlorophyll – A, chlorophyll – B total chlorophyll of the treatment seedlings particularly N deficient seedlings declined considerably during the study period. Visual deficiency symptoms of the nutrient elements also coincided with a corresponding reduction in foliar levels of the cocernrt element. There was remarkable improvement in the growth and recovery of the visual symptoms when the deficient element was again supplied to the seedlings through complete nutrient solution. The foliar nutrient content of these seedlings was also found to be improved significantly on application of complete nutrient solution.
  • ThesisItemOpen Access
    Conservation strategy for Hopea parviflora Bedd. species through storage of seeds usinhg cryopreservation techniques
    (Department of Silviculture and Agroforestry, College of Forestry,Vellanikkara, 2001) Ani, J R; KAU; Sudhakara, K
    A detailed study was conducted at College of Forestry, Kerala Agricultural University, Vellanikkara, Thrissur, Kerala during 1998-2000 to standardize the conservation strategy for Hopea parviflora Bedd. species through storage of seeds using cryopreservation. Diameter of seeds collected at seven weeks after anthesis was found to be higher than that at sixth week. Physiological maturity of the propagules is attained between five and six weeks after anthesis. The propagules were subjected to different relative humidities, vacuum and dry air for different durations as a pretreatment for cryopreservation studies. In 100 to 46.6 per cent relative humidities, the moisture content and the leachate conductivity of the propagules were found to increase with duration compared to the initial value. Equilibrium moisture content of Hopea parviflora propagules was found to lie between 75.6 to 30 per cent relative humidities. Germination parameters of seed and seed without seed coat were not decreased significantly due to desiccation by relative humidities, vacuum or dry air, but that of embryonic axes was considerably reduced as rapid drying might have been effected due to 30 and 20 per cent relative humidities and also due to vacuum and dry air with duration. High culture contamination was observed in vacuum and dry air treatments. After cryopreservation techniques, the propagules invariably failed to regenerate but could retain green colour for two to three days.
  • ThesisItemOpen Access
    Biomass production and root distribution pattern of selected acacias
    (Department of Silviculture and Agroforestry, College of Forestry, Vellanikkara, 2014) Mereena, M J; KAU; Jamaludheen
    A field study was conducted with acacia species on an 18-year-old stand with 3m×3m spacing at the arboretum of College of Forestry, Thrissur, Kerala to evaluate the growth, biomass production, carbon sequestration and nutrient accumulation in four acacia species viz. Acacia auriculiformis, Acacia mangium, Acacia crassicarpa and Acacia aulacocarpa. The objective of the study included quantifying the biomass production potential, harvest related nutrient export from the site, characterising the root distribution pattern of these trees and to develop allometric equations for aboveground biomass, aboveground C sequestration, volume and bole volume. The above ground biomass was estimated from 20 destructively sampled trees from each species and the belowground biomass was estimated following root excavation of average sized trees of each species. Significant differences were observed for the tree growth parameters except DBH. Acacia aulacocarpa recorded the highest growth rates in terms of height closely followed by Acacia auriculiformis. Among the species, Acacia auriculiformis recorded the highest stand total biomass (432.08 Mg ha-1) and the lowest by Acacia mangium (367.76 Mg ha-1). The most important component of total biomass undoubtedly, was the bole while foliage contributed least to biomass yield. Maximum aboveground and belowground biomass was recorded for Acacia auriculiformis (336.29 Mg ha-1and 95.79 Mg ha- 1respectively). Carbon sequestration potential was estimated for both aboveground and belowground biomass. Maximum mean tree C sequestration was recorded for Acacia auriculiformis (176.38 kg C tree-1) followed by Acacia aulacocarpa (165.54 kg C tree-1). The bole portion sequester major portion of C (63.61% to 71.28%) followed by root portion (19.1% to 23.78%). MAI in total stand C sequestration was maximum for Acacia auriculiformis (10.89 Mg C ha-1yr-1) closely followed by Acacia aulacocarpa (10.22 Mg C ha-1yr-1). Stand level biomass C sequestration in the leaf and twig portion varied significantly among the acacias. Soil C sequestration under each species was estimated upto one meter depth. Maximum soil organic carbon (SOC) was accumulated in the surface soil (0-20 cm) for all the species. Acacia auriculiformis (77.96 Mg C ha-1) recorded the highest total SOC followed by Acacia mangium (74.75 Mg C ha-1). The treeless plots consistently recorded the lowest value of SOC in all the depth zones. Nutrient concentrations (N, P and K) in the biomass components were recorded highest for the leaf portion and the highest stand nutrient accumulation was recorded for the bole portion. The order of nutrients in the plant were N> K> P. The nutrient accumulation in the stand level was also recorded highest for Acacia auriculiformis. The order of nutrient accumulation in the soil was N> P> K. No significant variation was observed in root distribution pattern of different acacia species. However, the maximum root spread was recorded for Acacia mangium (5.23 m) and root length for Acacia crassicarpa (1.49 m
  • ThesisItemOpen Access
    Biomass production, carbon sequestration and nutrient flux in Ailanthus triphysa (DENNST.) Alston
    (Department of Silviculture and Agroforestry, College of Forestry, Vellanikkara, 2014) Sukanya, S; KAU; Kunhamu, T K
    A field study was carried out to evaluate the biomass production, carbon sequestration and nutrient dynamics in a 22-year-old Ailanthus triphysa stand managed at variable densities viz., 2360 trees ha-1, 1560 trees ha-1, 900 trees ha-1 and 560 trees ha-1. Total number of 80 trees (20 from each density regime) was destructively sampled for the biomass and carbon stock assessment. Also nutrient stocks (N, P and K) in various tissue types were assessed following standard procedures. The soil carbon and nutrient contents were assessed for one meter soil depth at regular depth intervals. The average stand height and bole height were 12.84 m and 8.19 m respectively which varied significantly with stand density with maximum value recorded for 1560 trees ha-1. The average dbh, mean tree volume and bole volume put in by the 22- yearold A. triphysa stand was 18.78 cm, 0.15 m3 and 0.16 m3 respectively which however could not yield a predictable trend with stand density. Despite this, the stand volume exhibited a proportional increase with stand density. The mean tree biomass production by the stand was 129.81 kg tree-1 that varied with stand density. Biomass production at stand level showed a consistent increase with increasing stand density with highest produced corresponding to 2360 trees ha-1 stand (384.67 Mg ha-1) and lowest for 560 trees ha-1 stand (93.86 Mg ha-1). Component wise biomass allocation was highest for stemwood (63 %) followed by roots (20 %) for all the density regimes while twig portion registered the least (0.97 %). The mean tree C stocks and corresponding MAI for A. triphysa at 22 years of stand age were 74.54 kg tree-1 and 3.38 kg tree-1 yr-1 respectively which was comparable with many fast growing MPT’s similar growth habit in humid tropics. Elemental carbon storage at stand level showed proportionate increase with density (177.00 Mg ha-1, 2360 tree ha-1; 140.47 Mg ha-1, 1560 tree ha-1; 49.06 Mg ha-1, 900 trees ha-1 and 43.33 Mg ha-1, 560 trees ha-1). Allometric models were developed for total aboveground biomass, bole biomass, aboveground carbon sequestration, total volume and bole volume using dbh and height as predictor variables. Among various models tried single variable (dbh) quadratic equations were best fitting with high R2 value. The nutrient concentration varied substantially among various biomass components with foliage registering highest N, P and K concentration (%). Tissue nutrient concentration followed the general order: leaves> twig> branch> root> stemwood. Biomass nutrient stocks at stand level varied considerably with stand density which was closely following biomass production trends. Nutrient storage followed the order N > P > K with highest stocks corresponding to stemwood followed by roots, branchwood, leaves and twigs. High nutrient accumulation in the stemwood suggests possible higher levels of nutrient export from the site through harvest. Transfer of nutrient rich leaf biomass into the soil at harvest would be a viable strategy in this context that replenish the nutrient loss through harvest. Carbon and nutrient contents in the soil were substantially higher in all sampled depths implying the dominant role of trees in improving the soil productivity in wooded systems. Study converges to the generalization that A. triphysa trees have a good potential for volume and biomass production under proper silvicultural management regimes.
  • ThesisItemOpen Access
    Soil productivity changes under selected indigenous forest tree species with special reference to beneficial microflora
    (Department of Silviculture and Agroforestry, College of Forestry, Vellanikkara, 2014) Lakshmy, A; KAU; Jamaludheen, V (Guide)
    A field investigation was conducted with four important indigenous tree species viz. Hopea parviflora Bedd., Artocarpus hirsutus Lamk., Pterocarpus marsupium Roxb, and Pterocarpus santalinus L.f. of about 30 years of age and planted at 2 m×2 m spacing at Kerala Forest Research Institute sub-centre Nilambur, India for a period of one year (May 2013 to May 2014). The specific objective of the study was to monitor the soil productivity changes due to long term occupancy of four indigenous trees with special reference to the beneficial soil microflora. The rhizosphere soil samples were collected for the isolation and enumeration of microbial population at quarterly interval for a period of one year. The population of bacteria, fungi, actinomycetes, nitrogen fixing bacteria, phosphate solubilising bacteria and potash solubilising bacteria were estimated by serial dilution method. The soil physico-chemical properties and the growth of trees were also observed. The highest microbial population, during the entire study period, was recorded in Artocarpus hirsutus and the lowest in treeless control plot. Artocarpus hirsutus recorded the maximum bacteria, fungi, actinomycetes, nitrogen fixing bacteria and phosphate solubilising microorganism. Potash solubilizing bacteria were recorded maximum in Hopea parviflora plots. The highest bacterial population observed in late summer and rainy season and the lowest recorded during early summer season. The highest fungal population recorded in late summer season and the lowest during winter season. Early summer season recorded the highest actinomycetes population and lowest in late summer season. The highest population of nitrogen fixing bacteria and phosphate solubilising microorganism observed in the winter season and the lowest population during early summer season. Potash solubilizing bacteria recorded highest during the summer seasons (late summer-Ι and late summer-II seasons) and lowest in the rainy season. In the final sampling (late summer) also, A. hirsutus was found to harbour maximum bacteria, nitrogen fixing bacteria, phosphate solubilising bacteria and potash solubilising bacteria. However, the highest fungi and actinomycetes associated with Pterocarpus santalinus. The long term occupancy of the indigenous tree species was found to have influenced the soil physico-chemical properties. The soil moisture and bulk density was distinctively superior in the wooded lands as compared to the treeless open area. The soil organic carbon (2.25%), available nitrogen (17.80 kg ha-1), total nitrogen (0.16%) and exchangeable potassium (70.70 kg ha-1), were also significantly higher in H. parviflora. The most acidic soil was also found in H. parviflora while the least acidic was A. hirsutus plots. The maximum height (12.41m) and the dbh (16.25 cm) were recorded in Pterocarpus santalinus The present study throws light into the intimate relation between the types and nature of soil microflora populations and their positive influence on the microsite enrichment aspects of promising indigenous tree species. The information will aid in preferential selection of these tree species along with crops into different tree farming systems where the ecosystem sustainability is of greater relevance. In general, all the four indigenous tree species recorded significantly higher microflora population and greatly improved physico-chemical properties than treeless plot due to long term occupancy of trees.
  • ThesisItemOpen Access
    Soil productivity changes under selected exotic forest tree species with special reference to beneficial microflora
    (Department of Silviculture and Agroforestry, College of Forestry, Vellanikkara, 2014) Tejkaran, Patidar; KAU; Jamaludheen, V
    A field investigation was carried out with four exotic tree species (Acacia auriculiformis, A. mangium, Casuarina equisetifolia and Swietenia macrophylla) planted at 2 m × 2 m spacing and of about 30 years age at Kerala Forest Research Institute sub-centre Nilambur during 2013-2014. The specific objective of the study was to examine the variations in soil productivity, with special reference to the beneficial microflora, due to long term occupancy of these trees. The rhizosphere soils were collected for isolation and enumeration of soil microflora like actinomycetes, bacteria, fungi, N-fixing bacteria, P-solubilises and Ksolubilising bacteria population at quarterly interval for a period of one year. The soil physico-chemical properties under the trees were also assessed. It was found that, over the years, the tree species influenced the soil physico-chemical properties. The lowest bulk density and pH were associated with tree plots compared to the treeless plots. However, the soil moisture content was not significantly different. The soil organic carbon, total nitrogen and exchangeable potassium were significantly higher (2.15%, 0.13% and 80.15 kg ha -1 respectively) in S. macrophylla and the lowest (1.38%, 0.07% and 52.34 kg ha -1 respectively) in treeless control plot. Available nitrogen and available phosphorus were significantly higher (71.6 kg ha -1 and 4.42 kg ha respectively) in A. mangium and the lowest (39.05 kg ha -1 and 4.08 kg ha -1 -1) in treeless plot. Tree species greatly influenced the soil microflora population. In general, microflora population was higher in tree plots than the treeless control. During the entire period of study, A. auriculiformis had highest mean bacteria, fungi and nitrogen fixing bacteria population while the highest population of phosphorus solubilizing microorganism and potash solubilizing bacteria was recorded in A. mangium. The highest mean population of actinomycetes was associated with C. equisetifolia. Seasonal variation in microflora population was obvious. Actinomycetes population was, generally, the lowest during rainy season and the peak population during early summer season and late summer-II. The bacterial population was the maximum during rainy season and the lowest during early summer season. The fungal population was more in both the late summer (2013 and 2014) seasons and the lowest in the winter season. Nitrogen fixing bacteria population was highest in the late summer-I and found to decrease through the rainy season and winter season. The populations of phosphate solubilizers and potash solubilizing bacteria were highest in late summer-I season and lowest in the rainy season (phosphate solubilizer) and winter season (potash solubilising bacteria). A. mangium had the maximum height (19.90 m) followed by C. equisetifolia, A. auriculiformis and the lowest was for S. macrophylla. Diameter at breast height was also highest in A. mangium (24.31 cm) followed by S. macrophylla, A. auriculiformis and C. equisetifolia The present study highlighted the influence of tree species on microflora population. Microflora population was found to be significantly higher in tree species compared to nearby treeless control plot and was found to be varying according to seasons. All the tree species have shown higher soil nutrient content than treeless plot. These four exotic tree species in the present study is seen to take part actively in the improvement of soil quality and soil health which are the major determinants of sustainable soil productivity.
  • ThesisItemOpen Access
    Viability of hopea parviffora seeds with reference to temperature , medium of storage and microencapsulation techniques
    (Department of Silviculture and Agroforestry, College of Forestry, Vellanikkara, 1996) Sunilkumar, K K; KAU; Sudhakara, K
    A detailed study was conducted at College of Forestry, Kerala Agricultural university, Vellanikkara, Thrissur, Kerala during 1994 – 95 to study the effect of temperature, storage medium, fungicide and microencapsulation of zygotic embryo (synthetic seed) on the storage behaviour of Hopea parviflora seeds. Storing the dewinged seeds with a moisture content below 30 per cent resulted in rapid decline in seed viability due to dehydration injuries irrespective of storage temperature. Sand and neemcake was inappropriate as a storage medium because sand favoured early germination of the seeds in storage condition itself and neemcake caused severe desiccation injuries. Storing fungicide treated winged seeds collected just before natural seedsheding, at 100 C retained high germination percentage upto 40 days. Sythetic seeds were also successfully stored up to 1 month at 100C without significant reduction in germination percentage. Two ppm and three ppm ABA was observed to be helpful for maintaining higher germination percentage of synthetic seeds during storage.
  • ThesisItemOpen Access
    Nutrient content and decomposition of leaf litter of Acacia mangium Willd as affected by season and field conditions
    (Department of Silviculture and Agroforestry, College of Forestry, Vellanikkara, 1995) Ramakrishna, Hegde; KAU; Gopikumar, K
    A detailed experiment was conducted at the College of Forestry, Kerala Agricultural University, Vellanikkara, Thrissur, during the period from 1993 to 1995 to study the nutrient content and pattern of leaf litter decomposition of Acacia mangium Wild. During south west monsoon and north east monsoon seasons. The experiment was conducted both in home garden and open area. The rate of decomposition was faster in all the study situations. The initial nitrogen, lignin, C:N ratio and lignin : nitrogen ratio of leaf litter were found to exert profound influence on the rate of decomposition. The decomposition rate was found to be a function of time, soil moisture and soil temperature. The nutrient release pattern in almost all cases followed a characteristic biphasic model with an initial rapid phase followed by a slower latter phase. Among the different nutrients, potassium showed a faster rate of mineralisation in most of the situations while calcium and nitrogen mineralised slowly. Among the several mathematical models tried to predict the absolute amount of nutrients in the residual mass, the second order hyperbolic function was found to be good fit in most of the cases. Though the PH was not altered significantly by the decomposing litter mass, the content of most of the nutrient elements is found to be drastically influenced.