Loading...
Thumbnail Image

Kerala Agricultural University, Thrissur

The history of agricultural education in Kerala can be traced back to the year 1896 when a scheme was evolved in the erstwhile Travancore State to train a few young men in scientific agriculture at the Demonstration Farm, Karamana, Thiruvananthapuram, presently, the Cropping Systems Research Centre under Kerala Agricultural University. Agriculture was introduced as an optional subject in the middle school classes in the State in 1922 when an Agricultural Middle School was started at Aluva, Ernakulam District. The popularity and usefulness of this school led to the starting of similar institutions at Kottarakkara and Konni in 1928 and 1931 respectively. Agriculture was later introduced as an optional subject for Intermediate Course in 1953. In 1955, the erstwhile Government of Travancore-Cochin started the Agricultural College and Research Institute at Vellayani, Thiruvananthapuram and the College of Veterinary and Animal Sciences at Mannuthy, Thrissur for imparting higher education in agricultural and veterinary sciences, respectively. These institutions were brought under the direct administrative control of the Department of Agriculture and the Department of Animal Husbandry, respectively. With the formation of Kerala State in 1956, these two colleges were affiliated to the University of Kerala. The post-graduate programmes leading to M.Sc. (Ag), M.V.Sc. and Ph.D. degrees were started in 1961, 1962 and 1965 respectively. On the recommendation of the Second National Education Commission (1964-66) headed by Dr. D.S. Kothari, the then Chairman of the University Grants Commission, one Agricultural University in each State was established. The State Agricultural Universities (SAUs) were established in India as an integral part of the National Agricultural Research System to give the much needed impetus to Agriculture Education and Research in the Country. As a result the Kerala Agricultural University (KAU) was established on 24th February 1971 by virtue of the Act 33 of 1971 and started functioning on 1st February 1972. The Kerala Agricultural University is the 15th in the series of the SAUs. In accordance with the provisions of KAU Act of 1971, the Agricultural College and Research Institute at Vellayani, and the College of Veterinary and Animal Sciences, Mannuthy, were brought under the Kerala Agricultural University. In addition, twenty one agricultural and animal husbandry research stations were also transferred to the KAU for taking up research and extension programmes on various crops, animals, birds, etc. During 2011, Kerala Agricultural University was trifurcated into Kerala Veterinary and Animal Sciences University (KVASU), Kerala University of Fisheries and Ocean Studies (KUFOS) and Kerala Agricultural University (KAU). Now the University has seven colleges (four Agriculture, one Agricultural Engineering, one Forestry, one Co-operation Banking & Management), six RARSs, seven KVKs, 15 Research Stations and 16 Research and Extension Units under the faculties of Agriculture, Agricultural Engineering and Forestry. In addition, one Academy on Climate Change Adaptation and one Institute of Agricultural Technology offering M.Sc. (Integrated) Climate Change Adaptation and Diploma in Agricultural Sciences respectively are also functioning in Kerala Agricultural University.

Browse

Search Results

Now showing 1 - 1 of 1
  • ThesisItemOpen Access
    On-farm evaluation of selected cereal fodders in prominent land use systems of Kerala
    (2021) Shahina, N N; Asha K Raj
    The field study entitled “On-farm evaluation of selected cereal fodders in prominent land use systems of Kerala” was carried out as two separate experiments in homegarden and coconut garden with livestock component in Madakkathara panchayath, Thrissur, Kerala during 2020-21. The study aimed to evaluate the forage yield and nutritive value of three cereal fodders viz., maize, sorghum, and bajra in major land use systems of Kerala viz., homegarden, coconut garden, and under open conditions with full sunlight. The study also assessed the relative performance of cereal fodders with hybrid napier, the popular fodder grass in Kerala. In each system, the treatments were laid out in Randomized Block Design replicated three times. The crops were cultivated during two different seasons viz., rabi and summer. In homegarden trial, all the crops established well in homegarden and contiguous open areas. In general, the growth parameters of crops were better in the open field. Among crops, maize showed better growth followed by hybrid napier, bajra, and sorghum. In open field, maize recorded significantly higher cumulative green fodder yield (93.27 Mg ha-1 in rabi and 93.32 Mg ha-1 in summer) followed by hybrid napier (70.42 Mg ha-1 in rabi and 79.20 Mg ha-1 in summer), while in homegarden, the yield of maize (57.16 Mg ha-1 and 73.50 Mg ha-1 ) and hybrid napier (60.42 Mg ha-1 in rabi and 73.51 Mg ha-1 in summer) was on par. The productivity of sorghum and bajra was poor in both land use systems. The shade tolerance of fodder grasses in homegarden is in the order; hybrid napier>maize >bajra >sorghum. Dry fodder yields also followed a similar trend. The fodder production was generally higher during the summer season than in rabi. The per day productivity was higher for bajra and maize in both land use systems. The PAR availability in homegarden as compared to open conditions during rabi and summer season was 31.72 and 49.18 percent respectively. Considering the quality aspects of fodder, the crude protein content was higher and crude fibre content was lower in homegarden than in open field, whereas xvii the dry matter and ash content showed the reverse trend. In homegarden and open field, maize had more crude protein content followed by hybrid napier, bajra, and sorghum during both seasons. The order of CF content in homegarden was in the order; maize maize > bajra > sorghum. The dry fodder yields also followed a similar trend. Per day productivity of fodder grasses was noticed more in open contiguous areas as compared to coconut garden. The maximum per day productivity was obtained by bajra and maize in both land management systems. The mean daily PAR transmittance in coconut garden during the rabi and summer season was 55.74 and 56.83 percent respectively. In the second experiment also, the crude protein content was higher and crude fibre content lower in coconut garden, whereas the dry matter and ash content observed more in open fields. In coconut garden, maize had more crude protein content followed by hybrid napier and the crude fibre content was minimum in maize. The ash content was also maximum in maize. The grasses in the coconut garden showed more N content and were recorded highest in maize. The P and K content recorded higher values in open conditions than in coconut garden. The P concentration was maximum in hybrid napier, while K content was highest in fodder bajra. In both systems, maize recorded the highest B: C ratio followed by hybrid napier. xviii Thus, the study indicates that cereal fodder, maize can be successfully and cost effectively cultivated in partially shaded tree-based systems like homegardens and coconut gardens with minimal yield loss. In comparison, yield reduction was higher under homegarden with low PAR transmission (41 percent) than that of coconut garden with higher light availability (56 percent). The study also indicated that maize outperformed hybrid napier both quantitatively and qualitatively under coconut garden with more availability of light, whereas it showed a comparable response in homegarden with intense shade indicating higher shade tolerance of hybrid napier. Bajra showed moderate performance under shady situations whereas sorghum yielded very poor results.