Loading...
Thumbnail Image

Kerala Agricultural University, Thrissur

The history of agricultural education in Kerala can be traced back to the year 1896 when a scheme was evolved in the erstwhile Travancore State to train a few young men in scientific agriculture at the Demonstration Farm, Karamana, Thiruvananthapuram, presently, the Cropping Systems Research Centre under Kerala Agricultural University. Agriculture was introduced as an optional subject in the middle school classes in the State in 1922 when an Agricultural Middle School was started at Aluva, Ernakulam District. The popularity and usefulness of this school led to the starting of similar institutions at Kottarakkara and Konni in 1928 and 1931 respectively. Agriculture was later introduced as an optional subject for Intermediate Course in 1953. In 1955, the erstwhile Government of Travancore-Cochin started the Agricultural College and Research Institute at Vellayani, Thiruvananthapuram and the College of Veterinary and Animal Sciences at Mannuthy, Thrissur for imparting higher education in agricultural and veterinary sciences, respectively. These institutions were brought under the direct administrative control of the Department of Agriculture and the Department of Animal Husbandry, respectively. With the formation of Kerala State in 1956, these two colleges were affiliated to the University of Kerala. The post-graduate programmes leading to M.Sc. (Ag), M.V.Sc. and Ph.D. degrees were started in 1961, 1962 and 1965 respectively. On the recommendation of the Second National Education Commission (1964-66) headed by Dr. D.S. Kothari, the then Chairman of the University Grants Commission, one Agricultural University in each State was established. The State Agricultural Universities (SAUs) were established in India as an integral part of the National Agricultural Research System to give the much needed impetus to Agriculture Education and Research in the Country. As a result the Kerala Agricultural University (KAU) was established on 24th February 1971 by virtue of the Act 33 of 1971 and started functioning on 1st February 1972. The Kerala Agricultural University is the 15th in the series of the SAUs. In accordance with the provisions of KAU Act of 1971, the Agricultural College and Research Institute at Vellayani, and the College of Veterinary and Animal Sciences, Mannuthy, were brought under the Kerala Agricultural University. In addition, twenty one agricultural and animal husbandry research stations were also transferred to the KAU for taking up research and extension programmes on various crops, animals, birds, etc. During 2011, Kerala Agricultural University was trifurcated into Kerala Veterinary and Animal Sciences University (KVASU), Kerala University of Fisheries and Ocean Studies (KUFOS) and Kerala Agricultural University (KAU). Now the University has seven colleges (four Agriculture, one Agricultural Engineering, one Forestry, one Co-operation Banking & Management), six RARSs, seven KVKs, 15 Research Stations and 16 Research and Extension Units under the faculties of Agriculture, Agricultural Engineering and Forestry. In addition, one Academy on Climate Change Adaptation and one Institute of Agricultural Technology offering M.Sc. (Integrated) Climate Change Adaptation and Diploma in Agricultural Sciences respectively are also functioning in Kerala Agricultural University.

Browse

Search Results

Now showing 1 - 1 of 1
  • ThesisItemOpen Access
    Functional dynamics of an agrisilvicultural system involving coconut palms, Multipurpose trees and kacholam
    (Department of Silviculture and Agroforestry, College of Forestry, Vellanikkara, 1997) Sureshkumar, S; KAU; Mohankumar, B
    A factorial experiment involving coconut (Cocos nucifera L.) and three multipurpose tree species (Ailanthus triphysa (Dennst.) Alston., Grevillea robusta A. Cunn. and Vateria indica L.) in two planting geometries (single and double hedge) was established in an existing coconut plantation (14 years old) at Vellanikkara in June, 1992. Kacholam (Kaempferia L.), a herbaceous medicinal plant was introduced in this trial as a floor crop in May 1995. Monocultures of coconut and kacholam were also maintained. Objectives of the study included evaluating suitability of interplanting multipurpose trees in coconut plantations, assessing the consequential changes in growth of multipurpose trees productivity of coconut and kacholam and inter alia characterise the above and below ground interactions between field and tree crop components. Coconut yield was not adversely affected by interplanting multipurpose trees until the multipurpose trees were about 4 years old. Multipurpose trees exhibited wide variations in their growth and crown characteristics. Consequently the light availability beneath the canopy was highly dependent on the multipurpose tree species. Availability of photosynthetically active radiation (PAR) was inversely proportional to the stand leaf area index. Available PAR ranged from 18-45 % and 22-45% of that in the open at 50 and 150 cm above ground level respectively. Planting geometry did not influence this parameter significantly. Kacholam grown in the open (sole crop) exhibited better growth as compared to kacholam grown in association with coconut and multipurpose trees. Nevertheless, rhizome yield (at final harvest) was comparable in all the situations. Tissue nutrient content of kacholam was also independent of multipurpose trees. The results suggests the moderate shade tolerant nature of kacholam, which can be highly useful in intercropping. However, no strong relationship could be established between light availability and rhizome yield. Multipurpose trees exhibited considerable root activity in the coconut rhizosphere, as evident from the data on 32P recovery. However, competition for nutrients between the two components was not evident, probably due to the juvenile nature (4 years old) of the multipurpose trees. Even at this stage, the three multipurpose trees exhibited discernable difference in foliar 32P activity. Cross-feeding of kacholam by coconut roots scavenging kacholam beds was noticed. Three to four years of tree growth did not alter the soil nutrient status very substantially. An increase in soil pH and available potassium was, however, observed. Nevertheless, kacholam cultivation resulted in a modest decline in soil nutrient status.