Loading...
Thumbnail Image

Kerala Agricultural University, Thrissur

The history of agricultural education in Kerala can be traced back to the year 1896 when a scheme was evolved in the erstwhile Travancore State to train a few young men in scientific agriculture at the Demonstration Farm, Karamana, Thiruvananthapuram, presently, the Cropping Systems Research Centre under Kerala Agricultural University. Agriculture was introduced as an optional subject in the middle school classes in the State in 1922 when an Agricultural Middle School was started at Aluva, Ernakulam District. The popularity and usefulness of this school led to the starting of similar institutions at Kottarakkara and Konni in 1928 and 1931 respectively. Agriculture was later introduced as an optional subject for Intermediate Course in 1953. In 1955, the erstwhile Government of Travancore-Cochin started the Agricultural College and Research Institute at Vellayani, Thiruvananthapuram and the College of Veterinary and Animal Sciences at Mannuthy, Thrissur for imparting higher education in agricultural and veterinary sciences, respectively. These institutions were brought under the direct administrative control of the Department of Agriculture and the Department of Animal Husbandry, respectively. With the formation of Kerala State in 1956, these two colleges were affiliated to the University of Kerala. The post-graduate programmes leading to M.Sc. (Ag), M.V.Sc. and Ph.D. degrees were started in 1961, 1962 and 1965 respectively. On the recommendation of the Second National Education Commission (1964-66) headed by Dr. D.S. Kothari, the then Chairman of the University Grants Commission, one Agricultural University in each State was established. The State Agricultural Universities (SAUs) were established in India as an integral part of the National Agricultural Research System to give the much needed impetus to Agriculture Education and Research in the Country. As a result the Kerala Agricultural University (KAU) was established on 24th February 1971 by virtue of the Act 33 of 1971 and started functioning on 1st February 1972. The Kerala Agricultural University is the 15th in the series of the SAUs. In accordance with the provisions of KAU Act of 1971, the Agricultural College and Research Institute at Vellayani, and the College of Veterinary and Animal Sciences, Mannuthy, were brought under the Kerala Agricultural University. In addition, twenty one agricultural and animal husbandry research stations were also transferred to the KAU for taking up research and extension programmes on various crops, animals, birds, etc. During 2011, Kerala Agricultural University was trifurcated into Kerala Veterinary and Animal Sciences University (KVASU), Kerala University of Fisheries and Ocean Studies (KUFOS) and Kerala Agricultural University (KAU). Now the University has seven colleges (four Agriculture, one Agricultural Engineering, one Forestry, one Co-operation Banking & Management), six RARSs, seven KVKs, 15 Research Stations and 16 Research and Extension Units under the faculties of Agriculture, Agricultural Engineering and Forestry. In addition, one Academy on Climate Change Adaptation and one Institute of Agricultural Technology offering M.Sc. (Integrated) Climate Change Adaptation and Diploma in Agricultural Sciences respectively are also functioning in Kerala Agricultural University.

Browse

Search Results

Now showing 1 - 1 of 1
  • ThesisItemOpen Access
    Performance of calliandra (Calliandra calothyrsus meissn.) under diverse mangement regimes in a coconut based hedge row fodder production system
    (Department of Silviculture and Agroforestry, College of Forestry, Vellanikkara, 2017) Anu Sagaran, K; KAU; Asha, K Raj
    A study entitled “Performance of calliandra (Calliandra calothyrsus Meissn.) under diverse management regimes in a coconut based hedge row fodder production system” was carried out at Instructional Farm, College of Horticulture, Vellanikkara during 2014-2015. The main objective of the study was to assess the influence of management practices like tree density, pruning height and pruning frequency on initial growth, forage yield and nutritional qualities of calliandra intercropped in coconut gardens under humid tropical conditions of Kerala. The treatments consisted of three levels of plant density (27,777; 22,222 and 17,777 plants ha-1), three levels of pruning frequency (8, 12 and 16 weeks interval) and two levels of pruning height (0.5m and 1m) in all possible combinations laid out under factorial randomized block design with three replications. The results revealed that various management practices had a profound influence on the forage yield and quality aspects of calliandra when grown as an intercrop in coconut garden. Comparing plant densities, highest density stand (27,777 plants ha-1) yielded 55 percent more forage (11.73Mg ha-1yr-1, dry basis) than the lowest density (17,777 plants ha-1), with higher foliage fraction. Quality parameters of forage like crude protein, ash, dry matter, phosphorus and potassium content increased and crude fibre content decreased at higher densities indicating closer spacing for production of tender nutritive fodder. Pruning at the prolonged interval of 16 weeks yielded more total forage, but the majority of the fodder comprised of stem fraction as indicated by the poor leaf-stem ratio. Leaf –stem ratio of fodder harvested at 8 and 12 weeks showed an increment of 125 percent over that of the 16 weeks interval, indicating more foliage production than stem fractions when harvested at shorter intervals. Pruning frequencies also had profound influence on nutritive value of the forage. Harvesting at shortest interval of 8 weeks and 12 weeks yielded fodder with maximum crude protein, phosphorus and potassium content when compared to 16 weeks. Ash and dry matter content in 99 fodder was significantly higher at the longest interval of 16 weeks. Crude fibre content of forage increased sharply from 28.33 to 49.98 percent by prolonging the harvest interval from 8 to 16 weeks thereby adversely affecting the palatability of the forage. Pruning height showed more prominent influence on forage yield of calliandra than the nutritive parameters. Dry fodder yield increased from 8.11 to 10.81 Mg ha-1yr-1 with increasing pruning height from 0.5 to 1m, with a higher leaf-stem ratio for taller stocks. Similarly there was a significant improvement in CP yield from taller stocks (1.67 Mgha-1 )when compared to shorter ones (1.23 Mgha-1) The interaction effects of plant density, pruning height and pruning frequency had no significant effect on yield and quality parameters of callianrda. The highest yielding combination (13.39 Mg ha-1dry basis) was found to be D1H2F2 (27,777 plants ha-1 + pruning height 1 m + pruning interval 12 weeks ) with higher foliage fraction and better nutritive parameters, compared to all other management levels, which were inferior either in forage yield or nutritive value or palatability of forage. On the whole, the study revealed that forage yield and quality of young stands of calliandra underneath coconut garden could be optimized at the cheapest level by adopting a tree density of 27,777plants ha-1, pruning height of 1m and pruning interval of 12 weeks. Moreover, based on the growth and yield performance and quality aspects, it is found that calliandra is a promising fodder tree, which can be successfully integrated with the existing coconut gardens of Kerala. Establishment and proper management of calliandra in coconut garden at appropriate management levels thus offers a cheap source of quality forage to Kerala farmers against the highly expensive concentrate feeds.