Loading...
Thumbnail Image

Kerala Agricultural University, Thrissur

The history of agricultural education in Kerala can be traced back to the year 1896 when a scheme was evolved in the erstwhile Travancore State to train a few young men in scientific agriculture at the Demonstration Farm, Karamana, Thiruvananthapuram, presently, the Cropping Systems Research Centre under Kerala Agricultural University. Agriculture was introduced as an optional subject in the middle school classes in the State in 1922 when an Agricultural Middle School was started at Aluva, Ernakulam District. The popularity and usefulness of this school led to the starting of similar institutions at Kottarakkara and Konni in 1928 and 1931 respectively. Agriculture was later introduced as an optional subject for Intermediate Course in 1953. In 1955, the erstwhile Government of Travancore-Cochin started the Agricultural College and Research Institute at Vellayani, Thiruvananthapuram and the College of Veterinary and Animal Sciences at Mannuthy, Thrissur for imparting higher education in agricultural and veterinary sciences, respectively. These institutions were brought under the direct administrative control of the Department of Agriculture and the Department of Animal Husbandry, respectively. With the formation of Kerala State in 1956, these two colleges were affiliated to the University of Kerala. The post-graduate programmes leading to M.Sc. (Ag), M.V.Sc. and Ph.D. degrees were started in 1961, 1962 and 1965 respectively. On the recommendation of the Second National Education Commission (1964-66) headed by Dr. D.S. Kothari, the then Chairman of the University Grants Commission, one Agricultural University in each State was established. The State Agricultural Universities (SAUs) were established in India as an integral part of the National Agricultural Research System to give the much needed impetus to Agriculture Education and Research in the Country. As a result the Kerala Agricultural University (KAU) was established on 24th February 1971 by virtue of the Act 33 of 1971 and started functioning on 1st February 1972. The Kerala Agricultural University is the 15th in the series of the SAUs. In accordance with the provisions of KAU Act of 1971, the Agricultural College and Research Institute at Vellayani, and the College of Veterinary and Animal Sciences, Mannuthy, were brought under the Kerala Agricultural University. In addition, twenty one agricultural and animal husbandry research stations were also transferred to the KAU for taking up research and extension programmes on various crops, animals, birds, etc. During 2011, Kerala Agricultural University was trifurcated into Kerala Veterinary and Animal Sciences University (KVASU), Kerala University of Fisheries and Ocean Studies (KUFOS) and Kerala Agricultural University (KAU). Now the University has seven colleges (four Agriculture, one Agricultural Engineering, one Forestry, one Co-operation Banking & Management), six RARSs, seven KVKs, 15 Research Stations and 16 Research and Extension Units under the faculties of Agriculture, Agricultural Engineering and Forestry. In addition, one Academy on Climate Change Adaptation and one Institute of Agricultural Technology offering M.Sc. (Integrated) Climate Change Adaptation and Diploma in Agricultural Sciences respectively are also functioning in Kerala Agricultural University.

Browse

Search Results

Now showing 1 - 1 of 1
  • ThesisItemOpen Access
    Evaluation of selectively fertilized coconut hybrids (Cocos nucifera L.) for water use efficiency through stable isotope discrimination
    (College of Agriculture, Vellayani, 2015) Aisha, Renju N A; KAU; Roy, Stephen
    A study entitled “Evaluation of selectively fertilized coconut hybrids (Cocos nucifera L.) for water use efficiency through stable isotope discrimination” was undertaken with an objective to evaluate the selectively fertilized coconut hybrids for water use efficiency, and to study the mechanism of water stress tolerance in coconut, and to estimate genetic variability in coconut for water use efficiency through stable isotope discrimination. A pot culture experiment was conducted for three months in Rain out shelter of the Department of Plant Physiology, where one year old coconut seedlings of seven coconut varieties and hybrids (Kerasree, Keraganga, Malayan Yellow Dwarf, Gangabondam, West Coast Tall and selectively fertilized hybrids of Kerasree and Keraganga) were grown and evaluated for water use efficiency through gravimetric method. The experiment was laid out in CRD with equal sets of seedlings under two treatments viz 100 % Field Capacity (T1) and 50 % Field Capacity (T2) with 3 replications. Water transpired from individual seedlings were estimated daily through gravimetry. The transpiration loss was replenished by adding specific quantity of water to maintain the plants at respective soil moisture levels. Total dry matter accumulation was determined through the initial and final samplings. Physiological and biochemical analyses were done at monthly intervals. At the end of three months, leaf samples from experimental seedlings were collected and sent to Isotopic Ratio Mass Spectrophotometric (IRMS) facility, UAS Bangalore for stable isotope discrimination. Meanwhile, leaf samples from adult palms of 30 coconut genotypes were collected from RARS, Pilicode and sent for stable isotope discrimination. Among all genotypes, Kerasree S.F exhibited highest WUE (6.3 g/kg) under T2 by accumulating maximum dry matter (188.33 g) with a comparatively lower volume of cumulative transpired water. Results of carbon isotope discrimination was negatively correlated with gravimetric data of WUE so that genotype with highest water use efficiency (Kerasree S.F) marks the lowest discrimination value for C 13 (19.90). Decreased stomatal frequency and stomatal conductance up to 3 months in all coconut genotypes resulted in decreasing transpiration rate under 50 % F.C (T2). Relative water content was decreasing over the period of study under T2 for all varieties and highest tissue moisture content was maintained by Kerasree S.F (80.19 %). Wax deposition under water stress was highest in Kerasree (3.93 mg/cm2). Highest membrane integrity and chlorophyll stability index (99.19 %) under T2 was noticed in MYD. Pigment components viz chlorophyll a, chlorophyll b, total chlorophyll and carotenoids decreased with the extent of stress. Total soluble protein content decreased in all coconut types under T2. Proline content and activity of enzymatic antioxidants were high in selectively fertilized hybrid of Kerasree. Genetic variation for C13 discrimination was studied in 30 coconut genotypes that includes Talls, Dwarfs and Hybrids and the data revealed a discrimination range of (18.37-21.07). Among the coconut genotypes evaluated for WUE, hybrid Kerasree S.F was found to be the most water use efficient genotype under water deficit treatment, which coincides with its lowest value for C13 discrimination. Hence the study revealed that stable isotope discrimination can be used as an alternative for gravimetric method to screen out water use efficient genotypes. Moreover, efficacy of stress tolerance screening technique like selective fertilization is once again proved, which offers great prospects for drought tolerance breeding in perennials.