Loading...
Thumbnail Image

Kerala Agricultural University, Thrissur

The history of agricultural education in Kerala can be traced back to the year 1896 when a scheme was evolved in the erstwhile Travancore State to train a few young men in scientific agriculture at the Demonstration Farm, Karamana, Thiruvananthapuram, presently, the Cropping Systems Research Centre under Kerala Agricultural University. Agriculture was introduced as an optional subject in the middle school classes in the State in 1922 when an Agricultural Middle School was started at Aluva, Ernakulam District. The popularity and usefulness of this school led to the starting of similar institutions at Kottarakkara and Konni in 1928 and 1931 respectively. Agriculture was later introduced as an optional subject for Intermediate Course in 1953. In 1955, the erstwhile Government of Travancore-Cochin started the Agricultural College and Research Institute at Vellayani, Thiruvananthapuram and the College of Veterinary and Animal Sciences at Mannuthy, Thrissur for imparting higher education in agricultural and veterinary sciences, respectively. These institutions were brought under the direct administrative control of the Department of Agriculture and the Department of Animal Husbandry, respectively. With the formation of Kerala State in 1956, these two colleges were affiliated to the University of Kerala. The post-graduate programmes leading to M.Sc. (Ag), M.V.Sc. and Ph.D. degrees were started in 1961, 1962 and 1965 respectively. On the recommendation of the Second National Education Commission (1964-66) headed by Dr. D.S. Kothari, the then Chairman of the University Grants Commission, one Agricultural University in each State was established. The State Agricultural Universities (SAUs) were established in India as an integral part of the National Agricultural Research System to give the much needed impetus to Agriculture Education and Research in the Country. As a result the Kerala Agricultural University (KAU) was established on 24th February 1971 by virtue of the Act 33 of 1971 and started functioning on 1st February 1972. The Kerala Agricultural University is the 15th in the series of the SAUs. In accordance with the provisions of KAU Act of 1971, the Agricultural College and Research Institute at Vellayani, and the College of Veterinary and Animal Sciences, Mannuthy, were brought under the Kerala Agricultural University. In addition, twenty one agricultural and animal husbandry research stations were also transferred to the KAU for taking up research and extension programmes on various crops, animals, birds, etc. During 2011, Kerala Agricultural University was trifurcated into Kerala Veterinary and Animal Sciences University (KVASU), Kerala University of Fisheries and Ocean Studies (KUFOS) and Kerala Agricultural University (KAU). Now the University has seven colleges (four Agriculture, one Agricultural Engineering, one Forestry, one Co-operation Banking & Management), six RARSs, seven KVKs, 15 Research Stations and 16 Research and Extension Units under the faculties of Agriculture, Agricultural Engineering and Forestry. In addition, one Academy on Climate Change Adaptation and one Institute of Agricultural Technology offering M.Sc. (Integrated) Climate Change Adaptation and Diploma in Agricultural Sciences respectively are also functioning in Kerala Agricultural University.

Browse

Search Results

Now showing 1 - 2 of 2
  • ThesisItemOpen Access
    Strain improvement of oyster mushrooms- pleurotus cystidiosus O.K. Mill and pleurotus opuntiae (Durieu and LEV.) SACC.
    (Department of Plant Pathology, College of Agriculture, Vellayani, 2018) Krishnapriya, P J; KAU; Geetha, D
    The present study entitled “Strain improvement of oyster mushrooms: Pleurotus cystidiosus O.K.Mill and Pleurotus opuntiae (Durieu and Lev.) Sacc.” was carried out in College of Agriculture, Vellayani during 2015-2018, with the objective to standardize the techniques for production of oyster mushrooms: P. cystidiosus and P. opuntiae; and to study their morphological, physiological and cultural characteristics as well as nutritional and organoleptic qualities; and to undertake genetic improvement by protoplast fusion. The mushrooms were collected from two locations of Thiruvananthapuram and three fast growing isolates of Pleurotus spp. viz., PC2 (Vellayani), PNC1 (Chirayinkeezhu) and PO1 (Vellayani) were selected for the study. These isolates were identified as P. cystidiosus subsp. abalonus, P. cystidiosus and P. opuntiae using internal transcribed spacer (ITS) primers and subsequent sequencing; and registered at Genbank database with accession numbers KY214254, KY887023 and KY214255 respectively. The fast growing isolates of P. cystidiosus (coremial), P. cystidiosus (non-coremial) and P. opuntiae recorded maximum growth on PDPA amended with one per cent yeast under dark condition. The optimum temperatures for the growth were 30 0C, 25 to 30 0C and 25 0C respectively whereas, the optimum pH were 8, 8 and 7 to 8 respectively. Studies with different substrates and amendments for spawn production revealed that sorghum with one per cent yeast was the best for P. cystidiosus (coremial) and P. opuntiae whereas, paddy grains with one per cent yeast for P. cystidiosus (non-coremial). Experiments with different substrates and amendments for mushroom production revealed that rubber wood sawdust sprayed with 2.5 per cent of 1 M potassium dihydrogen phosphate recorded the maximum BE for P. cystidiosus (non-coremial) (192.76 per cent). P. opuntiae recorded the maximum BE in rubber wood sawdust amended either with 4 per cent neem cake (91.38 per cent) or wheat bran (91.37 per cent). Major insect pests observed in the beds of Pleurotus spp. were phorid flies, spring tails, black ants and staphylinid beetles. The competitor moulds observed were different species of Coprinus, Aspergillus, Penicillium and Trichoderma. Sporocarps soaked in one per cent CA for 15 minutes followed by mechanical drying and powdering was the best post harvest treatment for both P. cystidiosus (non-coremial) and P. opuntiae. Mycelium of P. cystidiosus (coremial) showed black coremial structures, representing its asexual stage (Antromycopsis broussonetiae Pat. & Trab.). The coremia comprised of elliptical (16.31 µm x 7.48 µm) and round conidia (8.06 to 8.49 µm). The black colour of coremia was due to melanin which was extracted (255.56 mg l-1) and characterized. The performance of long duration P. cystidiosus (non-coremial) and short duration P. opuntiae was compared with two ruling mushrooms of Kerala viz., long duration P. florida (Mont.) Singer and short duration P. eous (Berk.) Sacc. The study revealed that P. cystidiosus (non-coremial) and P. opuntiae showed higher BE compared to P. florida and P. eous, respectively. P. cystidiosus (non-coremial) recorded maximum moisture (94.05 per cent), starch (200.55 mg g-1), protein (30.2 mg g-1), fat (4.25 per cent), antioxidants (485.45 μg equivalent gram of ascorbic acid-1), beta-carotene (25.69 µg 100 mg-1), polyphenols (7.55 mg g-1) and energy (359.45 Kcal) compared to other Pleurotus spp. Sensory evaluation of mushroom products made from the species of Pleurotus was done and masala curry prepared from P. cystidiosus (non-coremial) scored the maximum value for overall acceptability. Shelf life of P. cystidiosus (non-coremial) was higher (5 days) compared to P. opuntiae, P. florida and P. eous (3 days each) in perforated poly propylene covers stored under refrigeration. Vanillin (0.05 per cent) and carbendazim (1 mM) were selected as dual biochemical markers for the PEG mediated protoplast fusion. Three days old P. cystidiosus (non-coremial) and four days old P. opuntiae recorded the maximum protoplast yield at five and four hours after incubation respectively with 0.6 M KCl and 30 mg ml-1 of enzyme consortium. Eight fusant lines with varied mycelial characters were obtained. Among fusants, F6 and F8 did not segregate in the second generation whereas, F4 segregated. F6 and F8 recorded higher BE of 168.05 and 99.95 per cent respectively compared to the parental lines and other fusants. Sporocarp of F6 and F8 was morphologically similar to P. cystidiosus (non-coremial) and P. opuntiae respectively; and F8 also exhibited low temperature adaptability. The present investigation indicated the exploitability of two promising isolates viz. P. opuntiae for tropical areas and P. cystidiosus (non-coremial) for cooler regions of Kerala using locally available materials and the standardized cultivation practices. The present study also standardized the protoplast fusion technique between P. cystidiosus (non-coremial) and P. opuntiae; and two fusant lines (F6 and F8) recorded higher BE which can be used for future breeding programmes.
  • ThesisItemOpen Access
    Integrated management of viral diseases of bittergourd (momordica charantia L.)
    (Department of Plant Pathology, College of Agriculture, Vellayani, 2018) Radhika, N S; KAU; Umamaheswaran, K
    The present research work entitled ‘Integrated management of viral diseases of bitter gourd (Momordica charantia L.) was carried out in the College of Agriculture, Vellayani during 2014-2017, with the objectives to study the occurrence and distribution of viruses in bitter gourd in Thiruvananthapuram, Idukki and Palakkad, immunomolecular characterization of the viruses, and screening of antiviral chemicals, antiviral principles of animal, plant and microbial origin for the management of the disease. In the suvey conducted at five locations in Thiruvanaanthapuram district, Pappanchani area recorded highest incidence of viral disease (60%) while highest Vulnerability Index (V.I) was recorded from Vellayani (56.00). In Idukki district, six major bitter gourd cultivating areas were surveyed among which Rajakumary area recorded the highest disease incidence (100%) and V.I (82.00). In Palakkad district, five locations were surveyed, among which panackatri and Thekkepotta recorded highest disease incidence of 88% and highest V.I (69.00). The major insects associated with the crop were whitefly (Bemisia tabaci (Genadius) with an incidence of 10-25%, aphids (Aphis gossypii glover) with an incidence of 10-40%, Jassids (Empoasca (Empoasca) motti Pruthi) with an incidence of 10-30% and mites with an incidence of 10-50%. Phyllody and little leaf symtoms (20% incidence) were also recorded in bittetgourd form Rajakumary and Rajakkad areas in Idukki. Flat limb and multiple proliferation of shoot tip were observed at many fields in Idukki. Symptoms associated with the disease include yellow mottle, mosaic,blistering, leaf curl and reduction in leaf size. Yellow mosaic and blistering is seen in severe infection finally leading to stunting of the plant, reduced flowering an fruiting and hairyness on stem. Mechanical transmission of the virus on Datura stramonium produced yellow lacal lesions indicating the presenceof Bean Golden mosaic virus (Begomo) in the infected leaf extract. This leaf extract also produced local lesions on othe indicator hosts like Chenopodium amaranticolor and Gomphrena globosa indicating the presence of Cucumber mosaic virus (CMV) or Potato virus Y (PVY). The viruses were transmitted by whiteflies (20%) and aphids (30%) from infected bittetgourd plants to healthy seedlings. Whiteflies (Bemisia tabaci Gennadius)) and aphids (Aphis gossypii Glover) are the vectors of the respective viruses Wedge grafting diseases scion on to 3-5 leaf stage healthy seedling of bittergourd produced symptoms of infection within ten days. KAU varieties Preethi and Priyanka were found to be susceptible to infection with preethi expressing a V.I of 70.80 and Priyanka expressing a V.I of 62.50 respectively. Ensyme linked immunosorbent assay (ELISA) and Dot immunobinding assay (DIBA) revealed the presence of three viruses belonging to Begomo, CMV and PVY group causing an mixed infection in bittergourd. The presence of all the three viruses were also confirmed in electron micrograph, Begomovirus as twin particles of size 18-20 X 30nm,CMVas single particles of 18nm and PVY as lonog flexuous rod of size 750nm. PCR amplification of coat protein gene (cp gene) of virus isolates from all the three districts yielded an amplicon of size approximately equal to 570 bp. Idukki and Palakkad isolates showed 94% identity to Tomato leaf Curl Virus isolate TNUDU BGI Coat Protein (AVI) gene while Trivandrum isolate showed 95% identity to Tomato leaf Curl Virus isolate TNPDU BG4 Coat Protein (AV1) gene . Phylogenetic tree constructed using multiple sequence alignment programme showed close relation between Begomo viruses identified in bittergourd from different districts. Studies on defense related enzymes such as peroxidase (PO), polyphenol oxidase (PPO) and phenyl alanine ammonialyase PAL) showed significant activity of PO and PPO in diseased plants than in healthy plants and the activity was on par in healthy and diseased for PAL. Protien profile of healthy and diseased at different days after virus inoculation through grafting indicated the production of novel proteins in diseased. There was no difference in the native profile of peroxidase in healthy and diseased at 15 days after virus inoculation. An additional isozyme band with a Rm value of 0.5 was observed in diseased at 45 days after virus inoculation. Management of the disease with antiviral chemicals and antiviral principles of plant, animal and microbial origin was undertaken as pot culture studies with pre and post inoculation of treatments. Twelve treatments with three replications each were laid out in completely randomized design for the evaluation. The treatments included Aspirin at two levels of 100 and 150 ppm, Salicylic acid (SA) at two levels of 100 and 150 ppm and Acibenzolar S methyl (ASM) at 50 and 75 ppm concentration, and two commercial formulations viz., Perfect and virus –Ex at 0.5 and 1.0 ml concentrations. The treatments were applied three times at 10 days interval. Pre application of thrice sprapying of Acibenzolar S methyl (ASM), 75 ppm concentration (V.I-35.00) at ten days interval was statistically significant over other treatments followed by ASM-50 ppm (V.I-41.33). Post application of antiviral chemicals also showed a statistically significant effect of three times spraying ASM-50 ppm(V.I-25.00) at ten days interval followed by spraying of Virus Ex 1ml L-1 (VThe best eight treatments with control was laid out as Randomised Block Design at the Instructional Farm, College of Agriculture, Vellayani during February to May 2017 as a field trial to study the effect of treatments on natural incidence of the viruses in the susceptible variety Preethi. The treatment, three sprays of ASM-50 ppm (V.I-28.33) at ten days interval ws on par with buttermilk (Three times dilution of curd) (V.I-39.16). Yield was also significantly high in ASM-50 ppm (437g plant-1) followed by Pseudomonas fluorescens talc based formulation (2%) (233 g plant-1)among the treatments.