Loading...
Thumbnail Image

Kerala Agricultural University, Thrissur

The history of agricultural education in Kerala can be traced back to the year 1896 when a scheme was evolved in the erstwhile Travancore State to train a few young men in scientific agriculture at the Demonstration Farm, Karamana, Thiruvananthapuram, presently, the Cropping Systems Research Centre under Kerala Agricultural University. Agriculture was introduced as an optional subject in the middle school classes in the State in 1922 when an Agricultural Middle School was started at Aluva, Ernakulam District. The popularity and usefulness of this school led to the starting of similar institutions at Kottarakkara and Konni in 1928 and 1931 respectively. Agriculture was later introduced as an optional subject for Intermediate Course in 1953. In 1955, the erstwhile Government of Travancore-Cochin started the Agricultural College and Research Institute at Vellayani, Thiruvananthapuram and the College of Veterinary and Animal Sciences at Mannuthy, Thrissur for imparting higher education in agricultural and veterinary sciences, respectively. These institutions were brought under the direct administrative control of the Department of Agriculture and the Department of Animal Husbandry, respectively. With the formation of Kerala State in 1956, these two colleges were affiliated to the University of Kerala. The post-graduate programmes leading to M.Sc. (Ag), M.V.Sc. and Ph.D. degrees were started in 1961, 1962 and 1965 respectively. On the recommendation of the Second National Education Commission (1964-66) headed by Dr. D.S. Kothari, the then Chairman of the University Grants Commission, one Agricultural University in each State was established. The State Agricultural Universities (SAUs) were established in India as an integral part of the National Agricultural Research System to give the much needed impetus to Agriculture Education and Research in the Country. As a result the Kerala Agricultural University (KAU) was established on 24th February 1971 by virtue of the Act 33 of 1971 and started functioning on 1st February 1972. The Kerala Agricultural University is the 15th in the series of the SAUs. In accordance with the provisions of KAU Act of 1971, the Agricultural College and Research Institute at Vellayani, and the College of Veterinary and Animal Sciences, Mannuthy, were brought under the Kerala Agricultural University. In addition, twenty one agricultural and animal husbandry research stations were also transferred to the KAU for taking up research and extension programmes on various crops, animals, birds, etc. During 2011, Kerala Agricultural University was trifurcated into Kerala Veterinary and Animal Sciences University (KVASU), Kerala University of Fisheries and Ocean Studies (KUFOS) and Kerala Agricultural University (KAU). Now the University has seven colleges (four Agriculture, one Agricultural Engineering, one Forestry, one Co-operation Banking & Management), six RARSs, seven KVKs, 15 Research Stations and 16 Research and Extension Units under the faculties of Agriculture, Agricultural Engineering and Forestry. In addition, one Academy on Climate Change Adaptation and one Institute of Agricultural Technology offering M.Sc. (Integrated) Climate Change Adaptation and Diploma in Agricultural Sciences respectively are also functioning in Kerala Agricultural University.

Browse

Search Results

Now showing 1 - 9 of 53
  • ThesisItemOpen Access
    Anthracnose disease of vegetable cowpea [Vigna unguiculata subsp. sesquipedalis (L.) verdcourt]
    (Department of Plant Pathology, College of Horticulture, Vellanikkara, 1999) Praveen Kumar, M; KAU; Sally Mathew, K
    A study on vanous aspects of anthracnose disease of cowpea was conducted at College of Horticulture, Vellanikkara during 1997-98. Etiological studies revealed Colletotrichum lindemuthianum (Sacc. and Magn.) Br. and Cav. as the main pathogen causing anthracnose disease in Kerala and the pathogen was found to be seed borne. Among the 50 genotypes tested, Kanakamony was found immune to the disease and seven genotypes were highly resistant to the disease. In ( disease management studies, all fungicides, botanicals and antagonist Trichoderma viride were equally effective under in vitro and field conditions. As far as disease control, yield and C:B ratio were concerned, mancozeb was found to be the best treatment. Summer season was found to be the best season for cowpea cultivation in areas where anthracnose is a problem. In crop loss assessment, significant difference was noticed between carbendazim treated and untreated plots in case of disease infection and yield, and yield loss of 53.85 per cent was recorded under natural condition due to this-disease.
  • ThesisItemOpen Access
    Biocontrol of rhizome rot of ginger using selected antagonists
    (Department of Plant Pathology, College of Horticulture, Vellanikkara, 1999) Julie George, K; KAU; Sukumaravarma, M
    Rhizome rot of ginger cas used by Pythium aphantdermatum (Edson) Fitzpatrick is one of the most destructive diseases of ginger in Kerala. The pathogen was isolated and its pathogenecity was established by Koch's postulates in ginger variety Rio-de-Jenerio. Among the various food bases evaluated, for the mass multiplication of selected antagonists, rice hull was found to be significantly superior to all others to obtain maximum growth for Trichoderma viride and Aspergillus flavus. For Aspergillus niger, rice bran was found to be significantly superior. The results on the effect of various treatments on germination showed that there was no significant difference among the treatments. The effect of antagonists on the pre- emergence rotting and post-emergence rotting (rhizome rot) were studied. In plots where antagonists (T viride, Aflavus or A. niger) or fungicides (mancozeb or copper oxychloride) were applied either as seed treatment or as soil incorporation at the time of planting, the pre-emergence rotting was not observed. The plot in which the antagonists T. vtride, A. mger and At flavus were applied in combination at 60 and 120 OAP, recorded the minimum rhizome rot incidence compared to other treatments. The plots in which the antagonists were applied twice, i.e., 60 and 120 OAP, the rhizome rot incidence was minimum compared to the plots with only one time application of antagonists. The maximum population of the pathogen P. aphanidermatum. was observed in plot where A. flavus was applied in combination with mancozeb. The multiplication of selected antagonists, 7: viride, A. flavus and A. niger in soil was found out by estimating their population at different stages. The population of T. virtde was maximum in plots where it was applied in combination with mancozeb in most of the period. The soil application of the combination of antagonists T. viride, A. flavus and A. niger did not affect the multiplication of anyone of them in soil. In general, soil incorporation of antagonists was found to helping in their mulitplication profusely compared to the seed treatment. The incorporation of the antagonists A. flavus and A. niger to the plots, twice was found to be superior than applying them only once, for getting maximum multiplication of propagules in soil. The result on the compatibility of antagonist with fungicide in field condition revealed that the antagonist T viride was quite compatible with mancozeb whereas A. flavus and A. niger were compatible with both fungicides tested (mancozeb and copper oxychloride). The treatments which was found to be superior in minimising the incidence of rhizome rot of ginger viz., T 16 (soil incorporation of T vir/de, A. niger at 60 and 120 DAP) and TI9 (soil incorporation of I: viride, A. niger and A. flavus) also recorded the maximum yield of ginger.
  • ThesisItemOpen Access
    Associative effect of azospirillum and bradyrhizobium on nodulation and growth of cowpea (viqna unquiculata (l.) walp,
    (Department of Plant Pathology College of Horticulture Vellanikkara, 1992) Sunitha, Menon S.; KAU; Rajendran, Pillai M .V
  • ThesisItemOpen Access
    Fungal diseases of selected medicinal plants of Kerala
    (Department of Plant Pathology, College of Horticulture, Vellanikkara, 1991) Sukumara, Varma A; KAU; ; Abi, Cheeran
  • ThesisItemOpen Access
    Leaf blight of banana and its control
    (Department of Plant Pathology, College of Agriculture, Vellayani, 1993) Saj, KV; KAU; Sulochana, K K
    Survey conducted to study the fungal pathogens causing leaf blight disease in banana in the three agricultural subdivisions of Thiruvananthapuram district, yielded seven fungal pathogens viz., colletotrichum musae, Curvularia sp, Guignardia musae, khuskia oryzae, Nodulisporium gregarium, Pestalotiopsis versicolor and Phaeoseptoria sp. Among these, Curvularia sp, Khuskia oryzae and Nodulisporium gregarium are new reports. Morphological characters and pathogenicity tests of all the seven isolated cultures were studied and described. Detailed studies were conducted on five fungal pathogens viz., C. musae, G. musae, K. oryzae, N. gregarium and Phaeoseptoria sp., since severe infections could be noticed by these fungi. Studies conducted on the growth and sporulation of pathogens on different, media indicated that Richard’s medium was the best for C. musae and G. musae, potato dextrose medium for K. oryzae and Phaeoseptoria sp. In the case of N. gregarium, potato dextrose agar and Czapek (Dox) broth were found to be the best solid and liquid media respectively for its growth. Best growth of C. musae, N. gregarium and Phaeoseptoria sp was obtained with maltose as the carbon source, whereas G. musae and K. oryzae utilized maximum starch and sucrose for their growth. Maximum mycelial weight of C. musae was obtained with sodium nitrate as nitrogen source, G. musae and K. oryzae with potassium nitrate, N. gregarium with glutamine and Phaeoseptoria sp. with asparagine. Potato dextrose broth and Richard’s solution were found to be best media for the toxin production by C. musae K. oryzae , G. musae and Phaeoseptoria sp. produced maximum toxin in Richard’s solution and N. gregarium in potato dextrose broth. Host range studies of the pathogen (s) conducted indicated that they can infect a number of economically important plants like, clove, cocoa, colocasia, nutmeg and tapioca, but none of the pathogens could infect clerodendron. Dithane M-45, calixin and Bavistin were able to inhibit the growth of the leaf blighting pathogens under laboratory conditions and under field conditions Dithane M-45 (0.2%) was found to be the best. Varietal screening trials showed that variety Rasakadali was moderately resistant/tolerant among the four popular varieties screened, whereas Nendran was the most susceptible variety.
  • ThesisItemOpen Access
    Vascular streak dieback of cocoa and its management
    (Department of Plant Pathology, College of Horticulture, Vellanikkara, 1996) Ajay Kumar, K M; KAU; Koshy, Abraham
    Vascular streak dieback (VSD) is a destructive disease of cocoa. Corticium culture medium, Water agar, Potato dextrose agar gave promising results in isolation of the pathogen. Petiole and midrib gave maximum success in isolation. Potato dextrose agar and Corticium culture media supported the growth of the fungus. Fusarium sp. And Colletotrichum gloeosporioides were the major contaminants interfering in the isolation of VSD. The morphological characters of the pathogen were studied from the sporophores occurring on naturally infected cocoa plants. Based on these characters, the pathogen causing VSD was identified as Oncobasidium theobromae Talbot and Keane. The disease produced various typical symptoms on leaves and stems of infected plants like pale green colour of leaves and subsequent yellowing with green islets, defoliation, brown marks on the scars of fallen leaves, axillary bud growth of the infected stem, rusty discolouration of cambium, vascular streak, whitish sporophores on the leaf scar of fallen infected leaves and finally the death of the infected twig. Histopathological studies showed the presence of fungal mycelium in the xylem vessels. Transmission studies by grafting and budding revealed no establishment of buds or grafts. But there was vascular streaking. No seed transmission was observed. In general Kitazin and Bavistin as a seed treatment had an effect on the height of plant and leaf production. Evaluation of cocoa types planted at three seed gradens indicated that some of them possess resistance/tolerance against VSD. Variation in disease incidence and intensity of VSD was noted in germplasm VI. Calixin spraying had an effect in preventing the incidence of the disease in seedlings.
  • ThesisItemOpen Access
    Survival of Xanthomonas campestris pv. Oryzae and its Control in Kuttanad
    (Department of Plant Pathology, College of Agriculture, Vellayani, 1996) Mary, C A; KAU; Sasikumar Nair
    The present investigation was taken up to understand the factors responsible for the recurrence of bacterial blight disease in a severe from only during the additional crop season in Kuttanad. The mode of survival of the pathogen during and in between the two major cropping seasons of Kuttanad region were also studied in detail. An extensive survey was also conducted among 115 farmers in 12 Krishibhavans of Kuttanad taluk for this purpose to collect specific informations on existing cultural practices, crop variety, nature and distribution of weed flora and self sown rice plants in and around rice fields and on wether data from June 1992 to March 1994. The efficacy of two different methods of spraying, prophylactic and curative using streptocycline, mixture of streptomycin and oxytetracycline in the proportion 1:9, Bactrinol – 100 cowdung extract on the control of bacterial blight disease was tested under field condition at Nedumudi in Kuttanad. The survey showed that there was considerable variation in the incidence of bacterial blight in Kuttanad taluk. Among the 12 Krishibhavan areas the disease incidence was maximum in Ramankari and Nedumudi and minimum in Kavalam, Kainakary and Muttar. In Neelamperoor and Thalavadi areas there was no incidence of this disease during the period of survey. Between the two major cropping seasons the disease incidence was more during the additional crop season than during Punja season. Red Triveni and Jyothy were the most popular varieties cultivated in the area and more than 50% of the farmers cultivate Red Triveni. It was observed that the variety Red Triveni as highly susceptible to bacterial blight disease. The isolate of the pathogen Xanthomonas oryzae pv. Oryzae from the rice variety Red Triveni was capable of both gelatin liquefaction and starch hydrolysis. The pathogen X. oryzae pv. oryzae was found to survive for a maximum period of 42 days in infected seed, 105 days in infected straw, 56 days in infected stubbles at room temperature, 24 days in infected stubbles under dry land condition and 14 days under wet land condition. The pathogen did not survive in soil and water. Weeds like Oryza sativa var. fatua and Paspalum conjugatum served as alternate host for the pathogen. Bacterial blight infected self sown rice plants could be seen in Kuttanad during the cropping and non cropping seasons. Due to certain specific reasons, the cultivation practices were often found to extend beyond the normal cropping seasons in the region resulting in the chances of survival of bacterial blight pathogen in the host plant itself. The specific weather conditions during the additional crop season played an important role for the severity of bacterial blight desease in this season in Kuttanad. The pathogen X. oryzae pv. oryzae was tested for sensitivity to antibiotics, Bactrinol – 100 and cowding extract under in vitro conditions. The maximum growth inhibition was obtained with oxytetracycline followed by chloramphen icol which was statistically on par with oxytetracycline. The effect of increasing concentrations of oxytetracycline in combination with streptomycin on growth of X. oryzae pv. oryzae was studied with 100, 250 and 500 ppm concentrations. The growth inhibition increased not only with the concentrations of antibiotic from 100–500 ppm but also with increasing concentration of oxytetracycline. The maximum zone of growth inhibition was obtained with 1:9 proportion of streptomycin and oxytetracycline. The five treatments selected for field evaluation trial included streptocycline at 500 ppm, streptomycin + oxytetracycline (1:9) at 250 ppm and 500 ppm, Bactrinol -100 at 500 ppm and fresh cowdung extract at 20g/1. Two different spraying methods, prophylactic and curative were evaluated in two rice varieties, T(N) 1 and jyothy. The reduction in disease index by prophylactic and curative sprayings was maximum after spraying with cowdung extract 20g/1. As regards to two methods of spraying, significant reduction in per cent disease index was obtained with curative spraying. The maximum per cent increase in grain yield over control was obtained after curative spraying with 500 ppm streptomycin and oxytetracycline mixture in jyothy followed by cowdung extract 20 g/l. In T(N) 1 and jyothy both by prophylactic and curative spraying, the thousand grain weight was maximum with cowdung extract 20 g/1. As regards to two method of spraying, significant increase in grain yield and thousand grain weight was obtained after curative spraying. In T(N) 1, both by prophylactic and curative spraying the per cent increase in straw yield was maximum with a mixture of streptomycin and oxytetracycline at 500 ppm and jyothy with cowdung extract 20g/1. In T(N)1 significant reduction in chaff per cent was recorded by prophylactic spraying while in Jyothy no significant difference was obtained by the two methods of spraying. In both these varieties the reduction in chaff per cent was maximum by spraying with cowdung extract (20g/1). It was observed that two prophylactic spraying with selected bactericidal agents, neither resulted in any significant reduction in disease index nor increase in yield as compared to curative spraying. This could be due to the fact that in Kuttanad bacterial blight disease usually occurred only around the panicle initiation stage or even later. Therefore a need based curative spraying schedule would be most effective for the control of bacterial blight disease in Kuttanad. On working out the economic benefits of controlling bacterial blight it was observed that there will be economic return only from spraying infected plants of both (T(N) 1 and jyothy with cowdung extract 20g/1. The return from plants sprayed with all other treatments in the investigation was low when compared to unsprayed control plants. Thus it will be economically advantageous to use cowdung extract to control bacterial blight of rice.
  • ThesisItemOpen Access
    Screening Of Fungal Pathogens For Biocontrol Of Water Hyacinth (Eichhornia Crassipes (MART.)Solms)
    (Department of Plant Pathology, College of Agriculture, Vellayani, 1994) Santhy Kammath S; Naseema A
    A survey was conducted in and around Trivandrum district viz., in veli, Ambalathara and Akulam to obtain the fungal pathogens of water hyacinth for its biocontrol. Colletotrichum gloeosporioides (Penzig) Penzig and Sacc Curvularia lunata (Wakker) Boedjin, Fusarium equiseti (Corda) sacc., Fusarium semitectum Berk and Rav, Fusarium solani (Mart) sacc., R. solani Kuhn and sterile fungus were found infecting the plants. The seasonal occurrence of the fungi isolated was studied and it was found that Fusarium spp. were present throughout the period of study. C. gloeosporioides and R. solani were present in the rainy season only. The pathogenicity of all the above fungi to the water hyacinth plants was established by artificial inoculation. Host range studies revealed that R. solani had a wide host range, which included amaranthus, cowpea, rice Monochoria vaginalis and panicum repens. The host range of C. gloeosporioides included chilli, Commelina benghalensis, Hydrocotyl asiatica and Ludwigia parviflora Fusarium spp. were found to infect Monochoria vaginalis only. Among the fungal pathogens isolated from water hyacinth, F. semitectum caused highest intensity of infection of 51.10 per cent followed by F. equiseti and F. solani (48.88 per cent) C. gloeosporioides and R. solani caused 44.44 and 45.76 per cent intensity of infection respectively. Curvularia lunata caused the lowest intensity of infection of 20 per cent. An experiment was conducted to fix the concentration of inoculam required for effective destruction of water hyacinth. The spore concentration of 10 9 spores/ml was the most effective one in the case of F. equiseti, F. semitectum and F. solani For C. gloeosporioides spore concentration of 2 x 109 sporce/ml was the most effective one. Different carrier materials were tried for mass multiplication and storage of the promising fungal pathogens of water hyacinth. The different carrier materials tested were coir pith, paddy straw, peat moss, rice bran and wheat bran. Wheat bran was found to be the most suitable media for F. equiseti, F. semitectum and F. solani. In wheat bran, the spore count and viability of the spores of these fungi were maximum. For C. gloeosporioides, in rice bran maximum spore count was obtained whereas, in the case of viability of the spores, rice bran and wheat bran were on par. In peat moss none of the fungi grew. In the field tests conducted to try different methods of application of the fungi viz., C. gloeosporioides, F. equiseti, F. semitectum and F. solani, applying bilts of inoculum of the fungi and spraying of the inoculum of the fungi were found to be the best methods. Whereas, dusting of the inoculum produced very poor symptoms. The field performance of the fungi in different carrier materials showed that rice bran and wheat bran inoculum caused good symptom development on water hyacinth plants whereas, coir pith inoculum caused poor symptom development. All the three Fusarium spp. viz., F. equiseti, F. semitectum and F. solani were found to produce toxin. Which could cause similar symptoms on the water hyacinth leaves as those produced by inoculating the culture bits.
  • ThesisItemOpen Access
    Management of foot rot of black pepper (piper nigrum L.) with va mycorrhiza and antagonists
    (Department of Plant Pathology, College of Agriculture, Vellayani, 1998) Christin Robert, P; KAU; Sivaprasad, P
    Extensive investigation was carried out to develop a native microbial inoculant based technology involving Arbuscular Mycorrhizal Fungi (AMF) and fungal antagonists for the foot rot disease management and growth improvement of black pepper in the nursery and field. Phytophthora capsici Leonian emend A. Alizadeh and P.H. Tsao, the foot rot pathogen isolated from Peringammala, Thiruvananthapuram district was found most virulent isolate. Seven native AMF cultures and fifty fungal antagonists were isolated from Kerala soils. AMF isolates were screened in the green house for plant growth improvement and disease tolerance in comparison with identified species-Glomus fasciculatum, G.clarum and Gigaspora margarita. Of the ten AMF tested isolates Is - 6, Pi - 11, Pi - 9, G. fasciculatum and Gigaspora margarita were very effective in stimulating growth and nutrient (P, K, Ca, Mg, Cu, Fe, Mn and Zn) uptake of black pepper. Regarding the ability of AMF in reducing the foot rot incidence, Glomus fasciculatum recorded the lowest plant mortality and root rot index (53.35% and 62.50%) followed by Is - 6 (60.00% and 64.77%) and Pi - 11 (60.64% and 68.18%) as against 100 per cent mortality and 98.60 per cent root rot index noticed in control. The above five cultures were subjected for further studies. Characterisation of AMF associated with different genotypes of black pepper grown in various soil types indicated the definite influence of soil type on AMF colonization. Sandy soil (oxyaquic quartpsamment) harboured maximum root colonization while forest soil (haplic argiustoll) had the lowest. Species of Glomus particularly G. fasciculatum was the predominant AMF associated with black pepper irrespective of soil type. As an exception Acaulospora and Gigaspora species were frequently noticed in sandy soils. Based on the ability of the fungal antagonists to suppress P. capsici in vitro either through mycoparasitism, antibiosis or soil fungistasis, 24 isolates were selected for green house studies. In the further testing isolates A1, A13, A21, A22and A35 significantly reduced the foot rot infection and increased the plant growth. They showed better population build up in the soil and suppressed the P. capsici population considerably. These native antagonists were further tested in combination with selected AMF in the green house and field. Under green house condition, combination of G. fasciculatum x A1 or A21 showed significant influence on growth stimulation, while Is - 6 x A22 recorded lowest mortality of 32.90 per cent due to foot rot incidence as against 97 per cent in control. The dual inoculation of Is - 6 x A21 and Pi - 11 x A1 was highly effective in plant growth stimulation and disease suppression. Both the combination recorded less than 60 per cent infection and mortality due to the disease, while control showed 95.66 per cent infection and plant mortality. Bordeaux mixture and copper oxychloride recorded 66.67 and 59.68 per cent mortality respectively. AMF colonization and multiplication of antagonists were also favoured by dual inoculation. The potential AMF isolates Is - 6 and Pi - 11 were identified as species of Glomus while, the antagonistic isolates A1, A13, A21, A22, and A35 were confirmed as aspergillus fumigatus Fres., Fusarium oxysporum Schlecht. Ex Fr. Aspergillus sydowii (Bain. & Sart.) Thom. & Church, Trichoderma viride Pers. Ex Gray. And Gliomastix murorum (Corda) Hughes respectively. A technique for AMF inoculation to established pepper vines was developed using ‘carrier plants’. Raising sorghum with AMF inoculation around the pepper vines was found effective to achieve intense colonization in pepper roots by the introduced AMF in the field. This technique developed for the pepper vines may be tried for extending to other perennial crops for AMF inoculation. Promising AMF cultures Pi - 11, Is - 6, G. fasciculatum and antagonists Aspergillus fumigatus, A. sydowii, Trichoderma viride were further tested on eight year old established pepper vines following ‘carrier plant’ based AMF inoculation and cowdung - neem cake based antagonist inoculation. The treatment Pi - 11 x A. Sydowii was most effective with no symptom development, followed by Is- 6 x T. Viride or A. sydowii with disease score of 2.0 as against 7.0 recorded for control. The disease score for bordeaux mixture and copper oxychloride application was 3.5 and 3 respectively. Neem cake-cowdung food base was highly favourable for multiplication and activity of fungal antagonists. The amino acids, total sugar and reducing sugar and total phenols and orthodihydroxy phenol content and activity of cellulose and chitinase were influenced by AMF colonization particularly by Is - 6 and Pi - 11. The positive change could be related with the relative disease tolerance recorded for various AMF isolates. The development of native AMF and antagonists through extensive testing in the green house and field and also the technology of AMF inoculation for established pepper vines are the first record of work.