Loading...
Thumbnail Image

Kerala Agricultural University, Thrissur

The history of agricultural education in Kerala can be traced back to the year 1896 when a scheme was evolved in the erstwhile Travancore State to train a few young men in scientific agriculture at the Demonstration Farm, Karamana, Thiruvananthapuram, presently, the Cropping Systems Research Centre under Kerala Agricultural University. Agriculture was introduced as an optional subject in the middle school classes in the State in 1922 when an Agricultural Middle School was started at Aluva, Ernakulam District. The popularity and usefulness of this school led to the starting of similar institutions at Kottarakkara and Konni in 1928 and 1931 respectively. Agriculture was later introduced as an optional subject for Intermediate Course in 1953. In 1955, the erstwhile Government of Travancore-Cochin started the Agricultural College and Research Institute at Vellayani, Thiruvananthapuram and the College of Veterinary and Animal Sciences at Mannuthy, Thrissur for imparting higher education in agricultural and veterinary sciences, respectively. These institutions were brought under the direct administrative control of the Department of Agriculture and the Department of Animal Husbandry, respectively. With the formation of Kerala State in 1956, these two colleges were affiliated to the University of Kerala. The post-graduate programmes leading to M.Sc. (Ag), M.V.Sc. and Ph.D. degrees were started in 1961, 1962 and 1965 respectively. On the recommendation of the Second National Education Commission (1964-66) headed by Dr. D.S. Kothari, the then Chairman of the University Grants Commission, one Agricultural University in each State was established. The State Agricultural Universities (SAUs) were established in India as an integral part of the National Agricultural Research System to give the much needed impetus to Agriculture Education and Research in the Country. As a result the Kerala Agricultural University (KAU) was established on 24th February 1971 by virtue of the Act 33 of 1971 and started functioning on 1st February 1972. The Kerala Agricultural University is the 15th in the series of the SAUs. In accordance with the provisions of KAU Act of 1971, the Agricultural College and Research Institute at Vellayani, and the College of Veterinary and Animal Sciences, Mannuthy, were brought under the Kerala Agricultural University. In addition, twenty one agricultural and animal husbandry research stations were also transferred to the KAU for taking up research and extension programmes on various crops, animals, birds, etc. During 2011, Kerala Agricultural University was trifurcated into Kerala Veterinary and Animal Sciences University (KVASU), Kerala University of Fisheries and Ocean Studies (KUFOS) and Kerala Agricultural University (KAU). Now the University has seven colleges (four Agriculture, one Agricultural Engineering, one Forestry, one Co-operation Banking & Management), six RARSs, seven KVKs, 15 Research Stations and 16 Research and Extension Units under the faculties of Agriculture, Agricultural Engineering and Forestry. In addition, one Academy on Climate Change Adaptation and one Institute of Agricultural Technology offering M.Sc. (Integrated) Climate Change Adaptation and Diploma in Agricultural Sciences respectively are also functioning in Kerala Agricultural University.

Browse

Search Results

Now showing 1 - 1 of 1
  • ThesisItemOpen Access
    Management of foot rot of black pepper (piper nigrum L.) with va mycorrhiza and antagonists
    (Department of Plant Pathology, College of Agriculture, Vellayani, 1998) Christin Robert, P; KAU; Sivaprasad, P
    Extensive investigation was carried out to develop a native microbial inoculant based technology involving Arbuscular Mycorrhizal Fungi (AMF) and fungal antagonists for the foot rot disease management and growth improvement of black pepper in the nursery and field. Phytophthora capsici Leonian emend A. Alizadeh and P.H. Tsao, the foot rot pathogen isolated from Peringammala, Thiruvananthapuram district was found most virulent isolate. Seven native AMF cultures and fifty fungal antagonists were isolated from Kerala soils. AMF isolates were screened in the green house for plant growth improvement and disease tolerance in comparison with identified species-Glomus fasciculatum, G.clarum and Gigaspora margarita. Of the ten AMF tested isolates Is - 6, Pi - 11, Pi - 9, G. fasciculatum and Gigaspora margarita were very effective in stimulating growth and nutrient (P, K, Ca, Mg, Cu, Fe, Mn and Zn) uptake of black pepper. Regarding the ability of AMF in reducing the foot rot incidence, Glomus fasciculatum recorded the lowest plant mortality and root rot index (53.35% and 62.50%) followed by Is - 6 (60.00% and 64.77%) and Pi - 11 (60.64% and 68.18%) as against 100 per cent mortality and 98.60 per cent root rot index noticed in control. The above five cultures were subjected for further studies. Characterisation of AMF associated with different genotypes of black pepper grown in various soil types indicated the definite influence of soil type on AMF colonization. Sandy soil (oxyaquic quartpsamment) harboured maximum root colonization while forest soil (haplic argiustoll) had the lowest. Species of Glomus particularly G. fasciculatum was the predominant AMF associated with black pepper irrespective of soil type. As an exception Acaulospora and Gigaspora species were frequently noticed in sandy soils. Based on the ability of the fungal antagonists to suppress P. capsici in vitro either through mycoparasitism, antibiosis or soil fungistasis, 24 isolates were selected for green house studies. In the further testing isolates A1, A13, A21, A22and A35 significantly reduced the foot rot infection and increased the plant growth. They showed better population build up in the soil and suppressed the P. capsici population considerably. These native antagonists were further tested in combination with selected AMF in the green house and field. Under green house condition, combination of G. fasciculatum x A1 or A21 showed significant influence on growth stimulation, while Is - 6 x A22 recorded lowest mortality of 32.90 per cent due to foot rot incidence as against 97 per cent in control. The dual inoculation of Is - 6 x A21 and Pi - 11 x A1 was highly effective in plant growth stimulation and disease suppression. Both the combination recorded less than 60 per cent infection and mortality due to the disease, while control showed 95.66 per cent infection and plant mortality. Bordeaux mixture and copper oxychloride recorded 66.67 and 59.68 per cent mortality respectively. AMF colonization and multiplication of antagonists were also favoured by dual inoculation. The potential AMF isolates Is - 6 and Pi - 11 were identified as species of Glomus while, the antagonistic isolates A1, A13, A21, A22, and A35 were confirmed as aspergillus fumigatus Fres., Fusarium oxysporum Schlecht. Ex Fr. Aspergillus sydowii (Bain. & Sart.) Thom. & Church, Trichoderma viride Pers. Ex Gray. And Gliomastix murorum (Corda) Hughes respectively. A technique for AMF inoculation to established pepper vines was developed using ‘carrier plants’. Raising sorghum with AMF inoculation around the pepper vines was found effective to achieve intense colonization in pepper roots by the introduced AMF in the field. This technique developed for the pepper vines may be tried for extending to other perennial crops for AMF inoculation. Promising AMF cultures Pi - 11, Is - 6, G. fasciculatum and antagonists Aspergillus fumigatus, A. sydowii, Trichoderma viride were further tested on eight year old established pepper vines following ‘carrier plant’ based AMF inoculation and cowdung - neem cake based antagonist inoculation. The treatment Pi - 11 x A. Sydowii was most effective with no symptom development, followed by Is- 6 x T. Viride or A. sydowii with disease score of 2.0 as against 7.0 recorded for control. The disease score for bordeaux mixture and copper oxychloride application was 3.5 and 3 respectively. Neem cake-cowdung food base was highly favourable for multiplication and activity of fungal antagonists. The amino acids, total sugar and reducing sugar and total phenols and orthodihydroxy phenol content and activity of cellulose and chitinase were influenced by AMF colonization particularly by Is - 6 and Pi - 11. The positive change could be related with the relative disease tolerance recorded for various AMF isolates. The development of native AMF and antagonists through extensive testing in the green house and field and also the technology of AMF inoculation for established pepper vines are the first record of work.