Loading...
Thumbnail Image

Kerala Agricultural University, Thrissur

The history of agricultural education in Kerala can be traced back to the year 1896 when a scheme was evolved in the erstwhile Travancore State to train a few young men in scientific agriculture at the Demonstration Farm, Karamana, Thiruvananthapuram, presently, the Cropping Systems Research Centre under Kerala Agricultural University. Agriculture was introduced as an optional subject in the middle school classes in the State in 1922 when an Agricultural Middle School was started at Aluva, Ernakulam District. The popularity and usefulness of this school led to the starting of similar institutions at Kottarakkara and Konni in 1928 and 1931 respectively. Agriculture was later introduced as an optional subject for Intermediate Course in 1953. In 1955, the erstwhile Government of Travancore-Cochin started the Agricultural College and Research Institute at Vellayani, Thiruvananthapuram and the College of Veterinary and Animal Sciences at Mannuthy, Thrissur for imparting higher education in agricultural and veterinary sciences, respectively. These institutions were brought under the direct administrative control of the Department of Agriculture and the Department of Animal Husbandry, respectively. With the formation of Kerala State in 1956, these two colleges were affiliated to the University of Kerala. The post-graduate programmes leading to M.Sc. (Ag), M.V.Sc. and Ph.D. degrees were started in 1961, 1962 and 1965 respectively. On the recommendation of the Second National Education Commission (1964-66) headed by Dr. D.S. Kothari, the then Chairman of the University Grants Commission, one Agricultural University in each State was established. The State Agricultural Universities (SAUs) were established in India as an integral part of the National Agricultural Research System to give the much needed impetus to Agriculture Education and Research in the Country. As a result the Kerala Agricultural University (KAU) was established on 24th February 1971 by virtue of the Act 33 of 1971 and started functioning on 1st February 1972. The Kerala Agricultural University is the 15th in the series of the SAUs. In accordance with the provisions of KAU Act of 1971, the Agricultural College and Research Institute at Vellayani, and the College of Veterinary and Animal Sciences, Mannuthy, were brought under the Kerala Agricultural University. In addition, twenty one agricultural and animal husbandry research stations were also transferred to the KAU for taking up research and extension programmes on various crops, animals, birds, etc. During 2011, Kerala Agricultural University was trifurcated into Kerala Veterinary and Animal Sciences University (KVASU), Kerala University of Fisheries and Ocean Studies (KUFOS) and Kerala Agricultural University (KAU). Now the University has seven colleges (four Agriculture, one Agricultural Engineering, one Forestry, one Co-operation Banking & Management), six RARSs, seven KVKs, 15 Research Stations and 16 Research and Extension Units under the faculties of Agriculture, Agricultural Engineering and Forestry. In addition, one Academy on Climate Change Adaptation and one Institute of Agricultural Technology offering M.Sc. (Integrated) Climate Change Adaptation and Diploma in Agricultural Sciences respectively are also functioning in Kerala Agricultural University.

Browse

Search Results

Now showing 1 - 1 of 1
  • ThesisItemOpen Access
    Molecular characterization of virus causing infectious chlorosis disease of banana
    (Department of Plant Pathology, College of Horticulture Vellanikkara, 2017) Ahamed Mujtaba, V; KAU; Anita Cherian, K
    The experiment entitled “Nutrient management in strawberry (Fragaria x ananassa Duch.)” was undertaken at Regional Agricultural Research Station, Ambalavayal, Wayanad during the year 2016-17. Performance of strawberry variety Winter Dawn was evaluated under nine treatments and a control in the open field viz., FYM 10 t ha-1 + NPK 50:20:50 kg ha-1 (T1); FYM 10 t ha-1 + NPK 75:30:75 kg ha-1 (T2 ); FYM 10 t ha-1 + NPK 100:40:100 kg ha-1 (T3); FYM 20 t ha-1 + NPK 50:30:100 kg ha-1 (T4); FYM 20 t ha-1 + NPK 75:40:50 kg ha-1 (T5); FYM 20 t ha-1 + NPK 100:20:75 kg ha-1 (T6); FYM 30 t ha-1 + NPK 50:40:75 kg ha-1 (T7); FYM 30 t ha-1 + NPK 75:20:100 kg ha-1 (T8); FYM 30 t ha-1 + NPK 100:30:50 kg ha-1 (T9) and an absolute control (T10), without any nutrient application. All the treatments were on par and superior over the control (T10) in case of plant height. In case of plant spread, T2, T3, T5, T6, T7, T8 and T9 were on par and superior over the control while T1 and T4 were on par with each other but differs with other treatments. All the treatments except T2 were on par and superior over the control with respect to number of leaves per plant. Application of treatments had no significant effect on days to first flowering. In case of number of flowers and clusters per plant, T1, T2, T3, T5, T6, T7, T8 and T9 were on par and superior over the control while T4 was on par with the control (T10). Days to first harvest was minimum in T6, T7, T8 and T9 which were on par while all other treatments were on par with the control (T10).In case of number of fruits and yield per plant, T7 (FYM 30 t ha-1 + NPK 50:40:75 kg ha-1) and T8 (FYM 30 t ha-1 + NPK 75:20:100 kg ha-1) were on par and superior over other treatments including T1, T2, T3, T4, T5, T6 and T9 which were on par and superior over the control. Average fruit weight recorded under T3, T5, T6, T7, T8 and T9 were on par which was followed by T2 on par with T4 and T1. Days to final harvest was not found to be influenced by the application of different treatments. Biochemical characters of fruits viz., TSS, acidity and TSS/acidity ratio were not having any significant effect due to the application of treatments. In case of total sugars, T3, T7, T8 and T9 were having the highest content and were on par which was followed by T5 on par with T1, T2, T4, T6 and T10. The overall sensory score was highest in T7 followed by T8. Application of different treatments had no significant effect on the shelf life of strawberry fruits. N, P, K and Ca content in the plant were not significantly affected by any treatment while Mg content was found to be on par in all treatments and superior over the control. Soil analysis after the harvest of the crop revealed that the values for soil EC, available P, K, Mg and S were found to be elevated while soil pH, organic carbon and available Ca content were found to be at lower levels than the initial values before planting. It was concluded that among different nutrient combinations evaluated, T7 (FYM 30 t ha-1 + NPK 50:40:75 kg ha-1) with a BC ratio of 3.06 can be recommended for further optimization and refinement.