Loading...
Thumbnail Image

Kerala Agricultural University, Thrissur

The history of agricultural education in Kerala can be traced back to the year 1896 when a scheme was evolved in the erstwhile Travancore State to train a few young men in scientific agriculture at the Demonstration Farm, Karamana, Thiruvananthapuram, presently, the Cropping Systems Research Centre under Kerala Agricultural University. Agriculture was introduced as an optional subject in the middle school classes in the State in 1922 when an Agricultural Middle School was started at Aluva, Ernakulam District. The popularity and usefulness of this school led to the starting of similar institutions at Kottarakkara and Konni in 1928 and 1931 respectively. Agriculture was later introduced as an optional subject for Intermediate Course in 1953. In 1955, the erstwhile Government of Travancore-Cochin started the Agricultural College and Research Institute at Vellayani, Thiruvananthapuram and the College of Veterinary and Animal Sciences at Mannuthy, Thrissur for imparting higher education in agricultural and veterinary sciences, respectively. These institutions were brought under the direct administrative control of the Department of Agriculture and the Department of Animal Husbandry, respectively. With the formation of Kerala State in 1956, these two colleges were affiliated to the University of Kerala. The post-graduate programmes leading to M.Sc. (Ag), M.V.Sc. and Ph.D. degrees were started in 1961, 1962 and 1965 respectively. On the recommendation of the Second National Education Commission (1964-66) headed by Dr. D.S. Kothari, the then Chairman of the University Grants Commission, one Agricultural University in each State was established. The State Agricultural Universities (SAUs) were established in India as an integral part of the National Agricultural Research System to give the much needed impetus to Agriculture Education and Research in the Country. As a result the Kerala Agricultural University (KAU) was established on 24th February 1971 by virtue of the Act 33 of 1971 and started functioning on 1st February 1972. The Kerala Agricultural University is the 15th in the series of the SAUs. In accordance with the provisions of KAU Act of 1971, the Agricultural College and Research Institute at Vellayani, and the College of Veterinary and Animal Sciences, Mannuthy, were brought under the Kerala Agricultural University. In addition, twenty one agricultural and animal husbandry research stations were also transferred to the KAU for taking up research and extension programmes on various crops, animals, birds, etc. During 2011, Kerala Agricultural University was trifurcated into Kerala Veterinary and Animal Sciences University (KVASU), Kerala University of Fisheries and Ocean Studies (KUFOS) and Kerala Agricultural University (KAU). Now the University has seven colleges (four Agriculture, one Agricultural Engineering, one Forestry, one Co-operation Banking & Management), six RARSs, seven KVKs, 15 Research Stations and 16 Research and Extension Units under the faculties of Agriculture, Agricultural Engineering and Forestry. In addition, one Academy on Climate Change Adaptation and one Institute of Agricultural Technology offering M.Sc. (Integrated) Climate Change Adaptation and Diploma in Agricultural Sciences respectively are also functioning in Kerala Agricultural University.

Browse

Search Results

Now showing 1 - 1 of 1
  • ThesisItemOpen Access
    In vitro synthesis of gingerol and analysis of expressed sequence tags for gingerol production in ginger(Zingiber officinale Rosc.)
    (Centre for plant biotechnology and molecular biology,College of Horticulture, Vellanikkara, 2020) Manjusha, Rani; KAU; Shylaja, M R
    Black pepper (Piper nigrum L.), often described as the ‘King of spices’ is the most important spice crop, grown for its berries in the world. Indian pepper is preferred across the globe due to its intrinsic qualities. Foot rot is a devastating disease of black pepper. In the changing climate, drought can be a major threat in black pepper production. Hence, the present study was taken up at College of Horticulture, Vellanikkara and ICAR-IISR, Kozhikode to characterise and to identify superior accessions of black pepper for yield, quality and tolerance to biotic and abiotic stresses. Fifty accessions of black pepper in the bearing stage maintained in the National Active Germplasm Site of ICAR-IISR, Kozhikode formed the base material for the study. The accessions were characterised for fifty qualitative and fifty quantitative characters following the descriptor developed by IPGRI (1995). Wide variability was observed among the accessions for ten qualitative characters. Quantitative characters of shoot, leaf, spike and fruit also showed wide variability. Field tolerance to foot rot disease and pollu beetle infestation was observed among the accessions. Twenty accessions were selected from the base collection based on superiority of yield (> 450g green berries/vine) , field tolerance to foot rot disease infection (biotic susceptibility score 1) and pollu beetle infestation (biotic susceptibility score 1-3). They were further evaluated for biochemical principles of quality, tolerance to foot rot disease under artificial inoculation and tolerance to drought by physiological and biochemical analyses. Piperine, essential oil and oleoresin ranged from 3.61 - 6.96 per cent, 3.00 - 5.87 per cent and 7.10 - 11.18 per cent, respectively, across the accessions. The accessions with high value of piperine, essential oil and oleoresin were identified as 7293, 7211 and 7289 respectively. The two accessions identified viz. 7293 and 7252 contained more piperine than the highest of Panniyur 2 (6.6 per cent) reported among the released varieties . Artificial inoculation of selected accessions using Phytophthora capsici culture for screening for foot rot disease resistance based on over all disease severity index of both stem and leaf lesions showed that accession 7259 was moderately resistant. The selected accessions did not exhibit significant variation for various physiological and biochemical parameters at field capacity. However higher value of photosynthesis, chlorophyll content, chlorophyll stability index, relative water content and membrane stability index and low leaf temperature were observed for accessions viz. 7215, 7240, P 5 and 7241 after five days and ten days of moisture stress induction following field capacity compared to other accessions. Higher values of proline, SOD, catalase and peroxidase were also observed for these accessions. The visual scoring showed that accessions with higher values for most of physiological and biochemical parameters of drought tolerance viz. 7215, 7240, P5, and 7241 had lesser number of fallen leaves and more number of leaves retained at permanent wilting point (PWP). The accessions 7215 and 7240 took twenty days to reach PWP compared to eleven accessions which took only 16 days to reach PWP. Foliar nutrition with sulphate of potash, IISR - Power mix and Pink Pigmented Facultative Methylotrophs (PPFM) had positive effect on drought tolerance for the accessions (7215, 7240, P5 and 7241) having natural tolerance. The identified accessions with high yield , quality and tolerance to biotic or abiotic stress can be used for further breeding programme.