Loading...
Thumbnail Image

Kerala Agricultural University, Thrissur

The history of agricultural education in Kerala can be traced back to the year 1896 when a scheme was evolved in the erstwhile Travancore State to train a few young men in scientific agriculture at the Demonstration Farm, Karamana, Thiruvananthapuram, presently, the Cropping Systems Research Centre under Kerala Agricultural University. Agriculture was introduced as an optional subject in the middle school classes in the State in 1922 when an Agricultural Middle School was started at Aluva, Ernakulam District. The popularity and usefulness of this school led to the starting of similar institutions at Kottarakkara and Konni in 1928 and 1931 respectively. Agriculture was later introduced as an optional subject for Intermediate Course in 1953. In 1955, the erstwhile Government of Travancore-Cochin started the Agricultural College and Research Institute at Vellayani, Thiruvananthapuram and the College of Veterinary and Animal Sciences at Mannuthy, Thrissur for imparting higher education in agricultural and veterinary sciences, respectively. These institutions were brought under the direct administrative control of the Department of Agriculture and the Department of Animal Husbandry, respectively. With the formation of Kerala State in 1956, these two colleges were affiliated to the University of Kerala. The post-graduate programmes leading to M.Sc. (Ag), M.V.Sc. and Ph.D. degrees were started in 1961, 1962 and 1965 respectively. On the recommendation of the Second National Education Commission (1964-66) headed by Dr. D.S. Kothari, the then Chairman of the University Grants Commission, one Agricultural University in each State was established. The State Agricultural Universities (SAUs) were established in India as an integral part of the National Agricultural Research System to give the much needed impetus to Agriculture Education and Research in the Country. As a result the Kerala Agricultural University (KAU) was established on 24th February 1971 by virtue of the Act 33 of 1971 and started functioning on 1st February 1972. The Kerala Agricultural University is the 15th in the series of the SAUs. In accordance with the provisions of KAU Act of 1971, the Agricultural College and Research Institute at Vellayani, and the College of Veterinary and Animal Sciences, Mannuthy, were brought under the Kerala Agricultural University. In addition, twenty one agricultural and animal husbandry research stations were also transferred to the KAU for taking up research and extension programmes on various crops, animals, birds, etc. During 2011, Kerala Agricultural University was trifurcated into Kerala Veterinary and Animal Sciences University (KVASU), Kerala University of Fisheries and Ocean Studies (KUFOS) and Kerala Agricultural University (KAU). Now the University has seven colleges (four Agriculture, one Agricultural Engineering, one Forestry, one Co-operation Banking & Management), six RARSs, seven KVKs, 15 Research Stations and 16 Research and Extension Units under the faculties of Agriculture, Agricultural Engineering and Forestry. In addition, one Academy on Climate Change Adaptation and one Institute of Agricultural Technology offering M.Sc. (Integrated) Climate Change Adaptation and Diploma in Agricultural Sciences respectively are also functioning in Kerala Agricultural University.

Browse

Search Results

Now showing 1 - 1 of 1
  • ThesisItemOpen Access
    Design, development and evaluation of an automated drip irrigation system
    (Department of Land and Water Resources and Conservation Engineering, Kelappaji College of Agricultural Engineering and technology, Tavanur, 2014) Navneet, Sharma; KAU; Abdul Hakkim, V M
    The present study was conducted to design, develop and evaluate an automated drip irrigation system working on the basis of soil moisture deficit and to establish the relationship between soil moisture content, electrical conductivity. The study involved fabrication of a soil moisture deficit based automation system and testing of the system under laboratory and field conditions. The system was tested and calibrated for automatic irrigation scheduling. As the soil started drying up, water content decreased and the conductivity reading in the data logger decreased. When the sensor readings reach the preset threshold level, the system gets automatically switched on. The irrigation setup was operated until the moisture reached the preset level of field capacity. Conversely, an increase the soil water content increased the conductivity. In this way, automation system continuously recorded fluctuations in soil moisture content under varying field conditions. Laboratory tests were conducted to evaluate the performance of the drip automation system in salt solution, sandy loam and laterite soils to develop the calibration curves. It was observed that there existed a significant correlation between the soil moisture content and electrical conductivity of sensors. Soil moisture sensors were evaluated with respect to the moisture content of sandy loam and laterite soils. In sandy loam soil, the values of maximum and minimum sensor output values were 17.5 to 3.3 mS/m and for laterite soil it was 15.1 to 2.4 mS/m. In the field evaluation using amaranths crop, the moisture distribution was more or less uniform near the soil surface soon after irrigation. The developed electrical conductivity based soil moisture sensors performed well in the laboratory study using sandy loam and laterite soils, but during field evaluation in sandy loam soil its performance was not satisfactory. In case of capacitor type soil moisture sensor, the performance was satisfactory in both conditions. Capacitor type soil moisture sensor performed well in sandy loam soil in the field evaluation. From the results of this study it can be concluded that capacitor type soil moisture sensor can perform better than electrical conductivity based soil moisture sensor for field use. The drip automation system developed was simple, precise, sensitive, light weight, cost effective in construction and fast responding. The speed of measurement, cheapness and portability are the key advantages and the system is easily adaptable for use with automatic logging equipment. There is scope for further studies on optimization of the electrode geometry and evaluation of electrical conductivity based soil moisture sensors with different fertilizer and chemical application.