Loading...
Thumbnail Image

Kerala Agricultural University, Thrissur

The history of agricultural education in Kerala can be traced back to the year 1896 when a scheme was evolved in the erstwhile Travancore State to train a few young men in scientific agriculture at the Demonstration Farm, Karamana, Thiruvananthapuram, presently, the Cropping Systems Research Centre under Kerala Agricultural University. Agriculture was introduced as an optional subject in the middle school classes in the State in 1922 when an Agricultural Middle School was started at Aluva, Ernakulam District. The popularity and usefulness of this school led to the starting of similar institutions at Kottarakkara and Konni in 1928 and 1931 respectively. Agriculture was later introduced as an optional subject for Intermediate Course in 1953. In 1955, the erstwhile Government of Travancore-Cochin started the Agricultural College and Research Institute at Vellayani, Thiruvananthapuram and the College of Veterinary and Animal Sciences at Mannuthy, Thrissur for imparting higher education in agricultural and veterinary sciences, respectively. These institutions were brought under the direct administrative control of the Department of Agriculture and the Department of Animal Husbandry, respectively. With the formation of Kerala State in 1956, these two colleges were affiliated to the University of Kerala. The post-graduate programmes leading to M.Sc. (Ag), M.V.Sc. and Ph.D. degrees were started in 1961, 1962 and 1965 respectively. On the recommendation of the Second National Education Commission (1964-66) headed by Dr. D.S. Kothari, the then Chairman of the University Grants Commission, one Agricultural University in each State was established. The State Agricultural Universities (SAUs) were established in India as an integral part of the National Agricultural Research System to give the much needed impetus to Agriculture Education and Research in the Country. As a result the Kerala Agricultural University (KAU) was established on 24th February 1971 by virtue of the Act 33 of 1971 and started functioning on 1st February 1972. The Kerala Agricultural University is the 15th in the series of the SAUs. In accordance with the provisions of KAU Act of 1971, the Agricultural College and Research Institute at Vellayani, and the College of Veterinary and Animal Sciences, Mannuthy, were brought under the Kerala Agricultural University. In addition, twenty one agricultural and animal husbandry research stations were also transferred to the KAU for taking up research and extension programmes on various crops, animals, birds, etc. During 2011, Kerala Agricultural University was trifurcated into Kerala Veterinary and Animal Sciences University (KVASU), Kerala University of Fisheries and Ocean Studies (KUFOS) and Kerala Agricultural University (KAU). Now the University has seven colleges (four Agriculture, one Agricultural Engineering, one Forestry, one Co-operation Banking & Management), six RARSs, seven KVKs, 15 Research Stations and 16 Research and Extension Units under the faculties of Agriculture, Agricultural Engineering and Forestry. In addition, one Academy on Climate Change Adaptation and one Institute of Agricultural Technology offering M.Sc. (Integrated) Climate Change Adaptation and Diploma in Agricultural Sciences respectively are also functioning in Kerala Agricultural University.

Browse

Search Results

Now showing 1 - 2 of 2
  • ThesisItemOpen Access
    Gene action and gene expression analysis in tomato (Solanum iycopersicum L.) under moisture stress
    (Department of Plant Breeding and Genetics, College of Agriculture, Vellayani, 2021) Chippy, A K; KAU; Beena, Thomas
    The present investigation entitled ‘‘Gene action and gene expression analysis in tomato (Solanum lycopersicum L.) under moisture stress” was conducted during the period 2017-2021, in the Department of Plant Breeding and Genetics, College of Agriculture, Vellayani. Thirty-two genotypes including local genotypes of tomato were collected from different sources and studied under three different experiments. In the first experiment, twenty-one F1 hybrids derived from the line x tester mating and their ten parents were transplanted in the field and the treatment mean sum of square due to genotypes was found to be highly significant for all the characters studied which would ultimately indicate diverse nature of selected genotypes. The mean performance showed wide range of variation for most of the characters studied. Among lines, L7 (Pusa Ruby) showed higher mean performance for all-out of nine characters viz., plant height, fruit length, fruit girth, fruit volume, fruit weight, yield per plant, yield per plot, root length, root volume and relative water content. Among three testers, T2 (Kuttichal Local) showed favourable mean performance for seventeen traits viz., plant height, primary branches per plant, number of leaves per plant, number of flowering clusters per plant, number of fruits per cluster, fruit length, fruit girth, fruit volume, fruit weight, yield per plant, yield per plot, vitamin C, total acidity, stomatal frequency, root length, root volume and proline content. Under moisture stress (Second experiment), among the lines, L7 (Pusa Ruby) showed higher mean performance for eleven characters viz., plant height, fruit length, fruit girth, fruit volume, fruit weight, yield per plant, yield per plot, total soluble solids, root length, root volume and pollen viability. Among three testers, T2 (Kuttichal Local) showed favourable mean performance for sixteen traits viz., plant height, primary branches per plant, number of leaves per plant, number of flowering clusters per plant, number of fruits per cluster, number of fruits per plant, fruit length, fruit girth, fruit volume, total soluble solids, total acidity, stomatal frequency, root length, root volume and canopy temperature. Based on general combining ability analysis, the line L6 (Arka Alok) ranked as top by exhibiting significant gca effects for six traits viz., fruit length, fruit girth, fruit volume, fruit weight, specific leaf area and root length. Among the testers, T3 (Kottayam Local) had superior gca effects for Days to 50% flowering, number of flowering clusters per plant, number of fruits per cluster, fruit length, fruit volume, yield per plot, total soluble solids, lycopene, titrable acidity canopy temperature and proline content. Under moisture stress, the line L3 (Akshaya) ranked as top by exhibiting significant gca effects for ten traits viz., primary branches per plant, number of fruits per cluster, number of fruits per plant, fruit weight, yield per plant, yield per plot, stomatal frequency, specific leaf area, canopy temperature and pollen viability. Among the testers, T1 (Palakkad Local) had superior gca effects for plant height, number of fruits per cluster, number of fruits per plant, fruit girth, fruit volume, yield per plant, yield per plot, total soluble solids, relative water content, canopy temperature and proline content. In the case of hybrids, Based on mean performance, the crosses L1 x T1 (Vellayani Vijay x Palakkad Local), L2 x T3 (Anagha x Kottayam Local), L3 x T1 (Akshaya x Palakkad Local), L3 x T3 (Akshaya x Kottayam Local), L4 x T1 (PKM 1 x Palakkad Local), L4 x T2 (PKM 1 x Kuttichal Local), L5 x T1 (Arka Meghali x Palakkad Local), L5 x T2 (Arka Meghali x Kuttichal Local), L5 x T3 (Arka Meghali x Kottayam Local), L6 x T2 (Arka Alok x Kuttichal Local) and L6 x T3 (Arka Alok x Kottayam Local) were superior for different yield characters. Under moisture stress, Hybrids L3 x T1 (Akshaya x Palakkad Local), L3 x T3 (Akshaya x Kottayam Local), L4 x T1 (PKM 1 x Palakkad Local), L4 x T2 (PKM 1 x Kuttichal Local), L5 x T2 (Arka Meghali x Kuttichal Local), L7 x T2 (Pusa Ruby x Kuttichal Local) and L7 x T3 (Pusa Ruby x Kottayam Local) were superior for yield based on mean value. Based on combining ability studies under normal field condition, identified superior crosses such as L1 x T1 (Vellayani Vijay x Palakkad Local), L2 x T1 (Anagha x Palakkad Local), L2 x T3 (Anagha x Kottayam Local), L3 x T1 (Akshaya x Palakkad Local), L3 x T3 (Akshaya x Kottayam Local), L4 x T1 (PKM 1 x Palakkad Local), L4 x T2 (PKM 1 x Kuttichal Local), L6 x T2 (Arka Alok x Kuttichal Local), L6 x T3 (Arka Alok x Kottayam Local), L7 x T1 (Pusa Ruby x Palakkad Local) and L7 x T3 (Pusa Ruby x Kottayam Local) exhibited higher sca effects for yield per plant. Under moisture stress, identified superior crosses such as L1 x T2 (Vellayani Vijay x Kuttichal Local), L2 x T3 (Anagha x Kottayam Local), L3 x T1 (Akshaya x Palakkad Local), L4 x T2 (PKM 1 x Kuttichal Local), L5 x T2 (Arka Meghali x Kuttichal Local), L6 x T2 (Arka Alok x Kuttichal Local) and L7 x T3 (Pusa Ruby x Kottayam Local) exhibited higher sca effects for yield per plant. Based on heterosis, Overall, nineteen hybrids (L1 x T1, L1 x T2, L1 x T3, L2 x T1, L2 x T2, L2 x T3, L3 x T1, L3 x T3, L4 x T1, L4 x T2, L4 x T3, L5 x T1, L5 x T2, L5 x T3, L6 x T1, L6 x T2, L6 x T3, L7 x T1 and L7 x T3) from twenty one crosses revealed significant and positive heterobeltiosis for yield per plant under normal field condition. In the case of gene action, dominance genetic variance (σ2D) is higher than additive genetic variance (σ2A) was observed for all the traits under normal field condition and water stress condition, indicating that traits are controlled by non-additive gene action. Correlation study revealed yield per plant was positively and significantly correlated with the traits viz., primary branches per plant, number of flowering clusters per plant, number of fruits per cluster, number of fruits per plant, fruit girth, fruit volume, fruit weight and yield per plot. Based on qRT-PCR, the expression of both genes (moisture stress related genesSlDREB 1 and SlWRKY 4) was upregulated under water stress in all selected genotypes and the expression was more than moisture stress tolerant check variety. The result is in accordance with the analysis of moisture stress related physiological characters in these genotypes in the field under stress. From the study, identified tolerant sources for moisture stress viz., Akshaya, Pusa Ruby and Kuttichal Local, these lines and tester can be used in breeding programmes for moisture stress tolerance. Based on mean performance and gca, the genotypes Vellayani Vijay, Akshaya, Arka Meghali, Arka Alok and Kottayam local which showed superiority in yield and fruit quality traits can be used for breeding for improvement of yield and quality traits. The hybrids L3xT1 (Akshaya x Palakkad Local), L4 x T2 (PKM 1 x Kuttichal Local), L5 x T2 (Arka Meghali x Kuttichal Local) and L7 x T3 (Pusa Ruby x Kottayam Local) which showed superiority for yield and quality characters with tolerance to moisture stress can be recommended for release after yield trials.
  • ThesisItemOpen Access
    Gene action and gene expression analysis in tomato (Solanum iycopersicum L.) under moisture stress
    (Department of Plant Breeding and Genetics, College of Agriculture, Vellayani, 2022) Chippy, A K; KAU; Beena, Thomas
    The present investigation entitled ‘‘Gene action and gene expression analysis in tomato (Solanum lycopersicum L.) under moisture stress” was conducted during the period 2017-2021, in the Department of Plant Breeding and Genetics, College of Agriculture, Vellayani. Thirty-two genotypes including local genotypes of tomato were collected from different sources and studied under three different experiments. In the first experiment, twenty-one F1 hybrids derived from the line x tester mating and their ten parents were transplanted in the field and the treatment mean sum of square due to genotypes was found to be highly significant for all the characters studied which would ultimately indicate diverse nature of selected genotypes. The mean performance showed wide range of variation for most of the characters studied. Among lines, L7 (Pusa Ruby) showed higher mean performance for all-out of nine characters viz., plant height, fruit length, fruit girth, fruit volume, fruit weight, yield per plant, yield per plot, root length, root volume and relative water content. Among three testers, T2 (Kuttichal Local) showed favourable mean performance for seventeen traits viz., plant height, primary branches per plant, number of leaves per plant, number of flowering clusters per plant, number of fruits per cluster, fruit length, fruit girth, fruit volume, fruit weight, yield per plant, yield per plot, vitamin C, total acidity, stomatal frequency, root length, root volume and proline content. Under moisture stress (Second experiment), among the lines, L7 (Pusa Ruby) showed higher mean performance for eleven characters viz., plant height, fruit length, fruit girth, fruit volume, fruit weight, yield per plant, yield per plot, total soluble solids, root length, root volume and pollen viability. Among three testers, T2 (Kuttichal Local) showed favourable mean performance for sixteen traits viz., plant height, primary branches per plant, number of leaves per plant, number of flowering clusters per plant, number of fruits per cluster, number of fruits per plant, fruit length, fruit girth, fruit volume, total soluble solids, total acidity, stomatal frequency, root length, root volume and canopy temperature. Based on general combining ability analysis, the line L6 (Arka Alok) ranked as top by exhibiting significant gca effects for six traits viz., fruit length, fruit girth, fruit volume, fruit weight, specific leaf area and root length. Among the testers, T3 (Kottayam Local) had superior gca effects for Days to 50% flowering, number of flowering clusters per plant, number of fruits per cluster, fruit length, fruit volume, yield per plot, total soluble solids, lycopene, titrable acidity canopy temperature and proline content. Under moisture stress, the line L3 (Akshaya) ranked as top by exhibiting significant gca effects for ten traits viz., primary branches per plant, number of fruits per cluster, number of fruits per plant, fruit weight, yield per plant, yield per plot, stomatal frequency, specific leaf area, canopy temperature and pollen viability. Among the testers, T1 (Palakkad Local) had superior gca effects for plant height, number of fruits per cluster, number of fruits per plant, fruit girth, fruit volume, yield per plant, yield per plot, total soluble solids, relative water content, canopy temperature and proline content. In the case of hybrids, Based on mean performance, the crosses L1 x T1 (Vellayani Vijay x Palakkad Local), L2 x T3 (Anagha x Kottayam Local), L3 x T1 (Akshaya x Palakkad Local), L3 x T3 (Akshaya x Kottayam Local), L4 x T1 (PKM 1 x Palakkad Local), L4 x T2 (PKM 1 x Kuttichal Local), L5 x T1 (Arka Meghali x Palakkad Local), L5 x T2 (Arka Meghali x Kuttichal Local), L5 x T3 (Arka Meghali x Kottayam Local), L6 x T2 (Arka Alok x Kuttichal Local) and L6 x T3 (Arka Alok x Kottayam Local) were superior for different yield characters. Under moisture stress, Hybrids L3 x T1 (Akshaya x Palakkad Local), L3 x T3 (Akshaya x Kottayam Local), L4 x T1 (PKM 1 x Palakkad Local), L4 x T2 (PKM 1 x Kuttichal Local), L5 x T2 (Arka Meghali x Kuttichal Local), L7 x T2 (Pusa Ruby x Kuttichal Local) and L7 x T3 (Pusa Ruby x Kottayam Local) were superior for yield based on mean value. Based on combining ability studies under normal field condition, identified superior crosses such as L1 x T1 (Vellayani Vijay x Palakkad Local), L2 x T1 (Anagha x Palakkad Local), L2 x T3 (Anagha x Kottayam Local), L3 x T1 (Akshaya x Palakkad Local), L3 x T3 (Akshaya x Kottayam Local), L4 x T1 (PKM 1 x Palakkad Local), L4 x T2 (PKM 1 x Kuttichal Local), L6 x T2 (Arka Alok x Kuttichal Local), L6 x T3 (Arka Alok x Kottayam Local), L7 x T1 (Pusa Ruby x Palakkad Local) and L7 x T3 (Pusa Ruby x Kottayam Local) exhibited higher sca effects for yield per plant. Under moisture stress, identified superior crosses such as L1 x T2 (Vellayani Vijay x Kuttichal Local), L2 x T3 (Anagha x Kottayam Local), L3 x T1 (Akshaya x Palakkad Local), L4 x T2 (PKM 1 x Kuttichal Local), L5 x T2 (Arka Meghali x Kuttichal Local), L6 x T2 (Arka Alok x Kuttichal Local) and L7 x T3 (Pusa Ruby x Kottayam Local) exhibited higher sca effects for yield per plant. Based on heterosis, Overall, nineteen hybrids (L1 x T1, L1 x T2, L1 x T3, L2 x T1, L2 x T2, L2 x T3, L3 x T1, L3 x T3, L4 x T1, L4 x T2, L4 x T3, L5 x T1, L5 x T2, L5 x T3, L6 x T1, L6 x T2, L6 x T3, L7 x T1 and L7 x T3) from twenty one crosses revealed significant and positive heterobeltiosis for yield per plant under normal field condition. In the case of gene action, dominance genetic variance (σ2D) is higher than additive genetic variance (σ2A) was observed for all the traits under normal field condition and water stress condition, indicating that traits are controlled by non-additive gene action. Correlation study revealed yield per plant was positively and significantly correlated with the traits viz., primary branches per plant, number of flowering clusters per plant, number of fruits per cluster, number of fruits per plant, fruit girth, fruit volume, fruit weight and yield per plot. Based on qRT-PCR, the expression of both genes (moisture stress related genesSlDREB 1 and SlWRKY 4) was upregulated under water stress in all selected genotypes and the expression was more than moisture stress tolerant check variety. The result is in accordance with the analysis of moisture stress related physiological characters in these genotypes in the field under stress. From the study, identified tolerant sources for moisture stress viz., Akshaya, Pusa Ruby and Kuttichal Local, these lines and tester can be used in breeding programmes for moisture stress tolerance. Based on mean performance and gca, the genotypes Vellayani Vijay, Akshaya, Arka Meghali, Arka Alok and Kottayam local which showed superiority in yield and fruit quality traits can be used for breeding for improvement of yield and quality traits. The hybrids L3xT1 (Akshaya x Palakkad Local), L4 x T2 (PKM 1 x Kuttichal Local), L5 x T2 (Arka Meghali x Kuttichal Local) and L7 x T3 (Pusa Ruby x Kottayam Local) which showed superiority for yield and quality characters with tolerance to moisture stress can be recommended for release after yield trials.