Loading...
Thumbnail Image

Kerala Agricultural University, Thrissur

The history of agricultural education in Kerala can be traced back to the year 1896 when a scheme was evolved in the erstwhile Travancore State to train a few young men in scientific agriculture at the Demonstration Farm, Karamana, Thiruvananthapuram, presently, the Cropping Systems Research Centre under Kerala Agricultural University. Agriculture was introduced as an optional subject in the middle school classes in the State in 1922 when an Agricultural Middle School was started at Aluva, Ernakulam District. The popularity and usefulness of this school led to the starting of similar institutions at Kottarakkara and Konni in 1928 and 1931 respectively. Agriculture was later introduced as an optional subject for Intermediate Course in 1953. In 1955, the erstwhile Government of Travancore-Cochin started the Agricultural College and Research Institute at Vellayani, Thiruvananthapuram and the College of Veterinary and Animal Sciences at Mannuthy, Thrissur for imparting higher education in agricultural and veterinary sciences, respectively. These institutions were brought under the direct administrative control of the Department of Agriculture and the Department of Animal Husbandry, respectively. With the formation of Kerala State in 1956, these two colleges were affiliated to the University of Kerala. The post-graduate programmes leading to M.Sc. (Ag), M.V.Sc. and Ph.D. degrees were started in 1961, 1962 and 1965 respectively. On the recommendation of the Second National Education Commission (1964-66) headed by Dr. D.S. Kothari, the then Chairman of the University Grants Commission, one Agricultural University in each State was established. The State Agricultural Universities (SAUs) were established in India as an integral part of the National Agricultural Research System to give the much needed impetus to Agriculture Education and Research in the Country. As a result the Kerala Agricultural University (KAU) was established on 24th February 1971 by virtue of the Act 33 of 1971 and started functioning on 1st February 1972. The Kerala Agricultural University is the 15th in the series of the SAUs. In accordance with the provisions of KAU Act of 1971, the Agricultural College and Research Institute at Vellayani, and the College of Veterinary and Animal Sciences, Mannuthy, were brought under the Kerala Agricultural University. In addition, twenty one agricultural and animal husbandry research stations were also transferred to the KAU for taking up research and extension programmes on various crops, animals, birds, etc. During 2011, Kerala Agricultural University was trifurcated into Kerala Veterinary and Animal Sciences University (KVASU), Kerala University of Fisheries and Ocean Studies (KUFOS) and Kerala Agricultural University (KAU). Now the University has seven colleges (four Agriculture, one Agricultural Engineering, one Forestry, one Co-operation Banking & Management), six RARSs, seven KVKs, 15 Research Stations and 16 Research and Extension Units under the faculties of Agriculture, Agricultural Engineering and Forestry. In addition, one Academy on Climate Change Adaptation and one Institute of Agricultural Technology offering M.Sc. (Integrated) Climate Change Adaptation and Diploma in Agricultural Sciences respectively are also functioning in Kerala Agricultural University.

Browse

Search Results

Now showing 1 - 1 of 1
  • ThesisItemOpen Access
    Drought response in plus trees of teak (Tectona grandis Linn.f.) provenances of Kerala
    (Department of Forest biology and tree improvement, Vellanikkara, 2020) Mohammed Ali Eltoum, Hassan; KAU; Santhoshkuamar, A V
    A study on ‘Drought response in plus trees of teak (Tectona grandis Linn. f.) provenances of Kerala’ was conducted in College of Forestry, Vellanikkara during 2018-2019 to evaluate variability in seedling biometric, physiological and biochemical characters of plant during drought stress and drought recovery. Drought stress was induced by withholding water till leaves exhibited symptoms of wilting. Plantlets were exposed to two consecutive drought treatments with an intervening period of stress relief through rehydration. Seedling vigor was screened at six months. No variability was present in morphometric characters like height, diameter, number of leaves and branches. After inducing drought stress, growth parameters slowed down in all accessions between plus trees. Induction of drought resulted in reduction in most of the physiological parameters of the plantlets of teak plus tree accessions. Relative water content, photosynthetic rate, stomatal conductance, transpiration rate, chlorophyll a, chlorophyll b, total chlorophyll and chlorophyll stability index showed reduction. However, under drought stress, plantlets showed increased of canopy air temperature differences and cell membrane stability index. Most of biochemical parameters like free amino acid, proline, glycine betaine, total soluble sugar, super oxide dismutase, peroxidase and malondialdehyde increased after inducing drought. However, total soluble protein and nitrate decreased under drought induction. After rehydration, most of these physiological and biochemical parameters rapidly returned to the level of normal irrigated condition. The stomatal conductance was only differed in the accessions before stress was induced. However, after stress, it was found that accessions differed in stomatal conductance, photosynthetic pigments and total chlorophyll content. In drought recovery, there was no variation in physiological parameters among accessions. Variability on biochemical characters were observed in nitrate reductase, free amino acid, proline and peroxidase among accessions during pre-stress stage, while in drought stress it was observed that proline, super oxide dismutase, peroxidase and 139 malondialdehyde differed among accession. In drought recovery, characters such as nitrate reductase, free amino acid, proline and peroxidase showed variability. Correlation studies showed that among the physiological and biochemical character only chlorophyll a, chlorophyll b and total chlorophyll showed positive correlation with the number of leaves during drought stress, while in recovery, positive correlation was shown by super oxide dismutase, chlorophyll a, chlorophyll b and total chlorophyll content and negative correlation was observed in photosynthetic rate, transpiration, relative water content and stomatal conductance. Hierarchical cluster analysis was done for the eleven accessions based on the Euclidian squared distance. During drought stress, the accessions grouped into five clusters; cluster III possesses four of accessions whereas the least number observed for the cluster V. In recovery, it was grouped into seven clusters; cluster VII had three accessions, while only one accession was present in cluster I, IV, V and VI. First two components of principle component analysis during drought stress accounted for 41.9 per cent of the total variability, which was mainly contributed positively by relative water content, nitrate reductase, free amino acid, proline and malondialdehyde. In drought recovery, first two components of PCA together accounted for 53.2 per cent of the total variability, which was mainly contributed positively by photosynthetic rate, stomatal conductance, transpiration rate, chlorophyll stability index, glycine betaine and malondiadehyde. Selection index were worked out to select accession tolerant to drought stress and recovery based on biochemical parameter and chlorophyll content using first principle component as index. It was found that KFRI T55 was most tolerant and quickest to recover after reliving stress among accession. It can be concluded from the results that physiological and biochemical variations exist in teak plus tree accessions. These results could be useful in selection of drought tolerant