Loading...
Thumbnail Image

Kerala Agricultural University, Thrissur

The history of agricultural education in Kerala can be traced back to the year 1896 when a scheme was evolved in the erstwhile Travancore State to train a few young men in scientific agriculture at the Demonstration Farm, Karamana, Thiruvananthapuram, presently, the Cropping Systems Research Centre under Kerala Agricultural University. Agriculture was introduced as an optional subject in the middle school classes in the State in 1922 when an Agricultural Middle School was started at Aluva, Ernakulam District. The popularity and usefulness of this school led to the starting of similar institutions at Kottarakkara and Konni in 1928 and 1931 respectively. Agriculture was later introduced as an optional subject for Intermediate Course in 1953. In 1955, the erstwhile Government of Travancore-Cochin started the Agricultural College and Research Institute at Vellayani, Thiruvananthapuram and the College of Veterinary and Animal Sciences at Mannuthy, Thrissur for imparting higher education in agricultural and veterinary sciences, respectively. These institutions were brought under the direct administrative control of the Department of Agriculture and the Department of Animal Husbandry, respectively. With the formation of Kerala State in 1956, these two colleges were affiliated to the University of Kerala. The post-graduate programmes leading to M.Sc. (Ag), M.V.Sc. and Ph.D. degrees were started in 1961, 1962 and 1965 respectively. On the recommendation of the Second National Education Commission (1964-66) headed by Dr. D.S. Kothari, the then Chairman of the University Grants Commission, one Agricultural University in each State was established. The State Agricultural Universities (SAUs) were established in India as an integral part of the National Agricultural Research System to give the much needed impetus to Agriculture Education and Research in the Country. As a result the Kerala Agricultural University (KAU) was established on 24th February 1971 by virtue of the Act 33 of 1971 and started functioning on 1st February 1972. The Kerala Agricultural University is the 15th in the series of the SAUs. In accordance with the provisions of KAU Act of 1971, the Agricultural College and Research Institute at Vellayani, and the College of Veterinary and Animal Sciences, Mannuthy, were brought under the Kerala Agricultural University. In addition, twenty one agricultural and animal husbandry research stations were also transferred to the KAU for taking up research and extension programmes on various crops, animals, birds, etc. During 2011, Kerala Agricultural University was trifurcated into Kerala Veterinary and Animal Sciences University (KVASU), Kerala University of Fisheries and Ocean Studies (KUFOS) and Kerala Agricultural University (KAU). Now the University has seven colleges (four Agriculture, one Agricultural Engineering, one Forestry, one Co-operation Banking & Management), six RARSs, seven KVKs, 15 Research Stations and 16 Research and Extension Units under the faculties of Agriculture, Agricultural Engineering and Forestry. In addition, one Academy on Climate Change Adaptation and one Institute of Agricultural Technology offering M.Sc. (Integrated) Climate Change Adaptation and Diploma in Agricultural Sciences respectively are also functioning in Kerala Agricultural University.

Browse

Search Results

Now showing 1 - 1 of 1
  • ThesisItemOpen Access
    Performance analysis and combining ability studies in anthurium cultivars
    (Department of Pomology and Floriculture, College of Agriculture, Vellayani, 2015) Sheena, A; KAU; Sabina George, T
    The investigation on “Performance analysis and combining ability studies in anthurium cultivars” was conducted at Department of Pomology and Floriculture, College of Agriculture, Vellayani during 2010 - 2013. The objectives were to evaluate introduced cultivars of anthurium for growth, flowering and floral attributes, to assess their compatibility with cultivars having breeding potential and to produce novel anthurium cultivars through inter-varietal hybridization. The study was conducted in two experiments and the results and salient findings are abstracted here. In experiment I, performance evaluation of nine introduced anthurium cultivars for growth and cut flower production was carried out. The cultivars exhibited differential responses in vegetative and floral characters. With respect to morphological characters the cultivars Marijke and Paradise had greater vegetative vigour, higher yields, larger spathes and greater vase life. Salmon Queen, Mozaik Fresh, Hillary, Cynthia and Elizabeth were moderate in vegetative vigour. Red Amour and Anastasia were short statured, lower in vegetative vigour and low yielders with smaller spathes. Variability studies indicated that phenotypic coefficient of variation was slightly higher than genotypic coefficient of variation for most of the characters indicating the greater influence of environment. Genotypic correlation coefficients were higher than phenotypic correlation coefficients for most of the characters. In experiment II, twenty one anthurium cultivars including the introduced ones were evaluated for their floral characters and from these, eight cultivars namely Paradise, Marijke, Mozaik Fresh, Lady Jane Pink, Orange Glory, Dragon’s Tongue, Lima White and Agnihotri Red were selected as parents for further hybridization. Significant differences in floral characters were noticed among the cultivars. The cultivars exhibited variations in the qualitative characters of spathe colour, texture, spadix colour and type and colour of the young leaf and petiole. Anthocyanin content of the spathe showed a gradation with variation in the intensity of spathe colour. Vase life of the cultivars ranged from 6.33 to 20.50 days. Peak pollen emergence was observed from October to January and absence of pollen was found from March to May. Combining ability analysis was carried out for 11 traits in which eight traits exhibited higher dominance variance and three traits had higher additive variance which indicated involvement of both additive and non-additive gene action in the inheritance of characters and suggested the importance of selection as well as hybridization for improvement of these characters. Marijke and Mozaik Fresh were good general combiners with respect to the characters number of fruits per spadix, percentage of fruit set, number of seeds and percentage of seed germination, Orange Glory and Dragon’s Tongue for days to seed maturity, days to seed germination, seedling survival and days from emergence to maturity of leaves and Paradise for percentage of fruit set, days for germination and leaf area. In vitro seed germination study revealed that surface sterilization with sodium hypochlorite 2 % for 15 minutes recorded the lowest incidence of contamination and highest survival percentage. Highest germination per cent and earlier leaf development were seen in full MS media without growth regulators. Seed germination in vitro and its further multiplication could reduce the time taken to develop new hybrids in large numbers. The hybrid plants in the field are in flowering, near flowering and pre flowering stages. Vegetative and floral characters of the 35 hybrids that flowered when compared with their parents, revealed variations in the parameters studied. Ten hybrids found promising based on qualitative evaluation of spathe and spadix characters in the present study can be further assessed for flower yield and cut flower attributes and selected for cultivation.