Loading...
Thumbnail Image

Kerala Agricultural University, Thrissur

The history of agricultural education in Kerala can be traced back to the year 1896 when a scheme was evolved in the erstwhile Travancore State to train a few young men in scientific agriculture at the Demonstration Farm, Karamana, Thiruvananthapuram, presently, the Cropping Systems Research Centre under Kerala Agricultural University. Agriculture was introduced as an optional subject in the middle school classes in the State in 1922 when an Agricultural Middle School was started at Aluva, Ernakulam District. The popularity and usefulness of this school led to the starting of similar institutions at Kottarakkara and Konni in 1928 and 1931 respectively. Agriculture was later introduced as an optional subject for Intermediate Course in 1953. In 1955, the erstwhile Government of Travancore-Cochin started the Agricultural College and Research Institute at Vellayani, Thiruvananthapuram and the College of Veterinary and Animal Sciences at Mannuthy, Thrissur for imparting higher education in agricultural and veterinary sciences, respectively. These institutions were brought under the direct administrative control of the Department of Agriculture and the Department of Animal Husbandry, respectively. With the formation of Kerala State in 1956, these two colleges were affiliated to the University of Kerala. The post-graduate programmes leading to M.Sc. (Ag), M.V.Sc. and Ph.D. degrees were started in 1961, 1962 and 1965 respectively. On the recommendation of the Second National Education Commission (1964-66) headed by Dr. D.S. Kothari, the then Chairman of the University Grants Commission, one Agricultural University in each State was established. The State Agricultural Universities (SAUs) were established in India as an integral part of the National Agricultural Research System to give the much needed impetus to Agriculture Education and Research in the Country. As a result the Kerala Agricultural University (KAU) was established on 24th February 1971 by virtue of the Act 33 of 1971 and started functioning on 1st February 1972. The Kerala Agricultural University is the 15th in the series of the SAUs. In accordance with the provisions of KAU Act of 1971, the Agricultural College and Research Institute at Vellayani, and the College of Veterinary and Animal Sciences, Mannuthy, were brought under the Kerala Agricultural University. In addition, twenty one agricultural and animal husbandry research stations were also transferred to the KAU for taking up research and extension programmes on various crops, animals, birds, etc. During 2011, Kerala Agricultural University was trifurcated into Kerala Veterinary and Animal Sciences University (KVASU), Kerala University of Fisheries and Ocean Studies (KUFOS) and Kerala Agricultural University (KAU). Now the University has seven colleges (four Agriculture, one Agricultural Engineering, one Forestry, one Co-operation Banking & Management), six RARSs, seven KVKs, 15 Research Stations and 16 Research and Extension Units under the faculties of Agriculture, Agricultural Engineering and Forestry. In addition, one Academy on Climate Change Adaptation and one Institute of Agricultural Technology offering M.Sc. (Integrated) Climate Change Adaptation and Diploma in Agricultural Sciences respectively are also functioning in Kerala Agricultural University.

Browse

Search Results

Now showing 1 - 1 of 1
  • ThesisItemOpen Access
    Response of Gladiolus to Rapid Cloning Through in Vitro Techniques
    (Department of pomology and floriculture, College of horticulture,Vellanikkara, 1995) Sakkeer Hussain, C T; KAU; Geetha, C K
    Investigations were carried out to study the response of gladiolus to rapid cloning through in vitro techniques at the Department of Pomology and Floriculture and Plant Tissue Culture Laboratory of All India Co-ordinated Floriculture Improvement Project, College of Horticulture, Vellanikkara, during 1992-94. The main objective was to identify the most suitable explant and media combination for in vitro cloning. The explants used were corm axillary buds, cormel tips, inflorescence nodal segments (for enhanced release of axillary buds), inflorescence internodal segments, flower buds, flower bud bracts, root segments (for somatic organogenesis) and leaf segments (for somatic embryogenesis). The best season for the collection of corm axillary buds and cormel tips was from September to May. Surface sterilization of the explants could be effectively done with 0.1 or o.2 per cent mercuric chloride and the duration of treatment varied from I to25 minutes. Culture establishment of the corm axillary bud, cormel tip explants were better in MS medium supplemented with BAP ranging from 1.0 mg 1 -1 to 4.0 mg 1-1. The concentration of BAP required varied according to the stage of development of corms and cormels. Higher levels of BAP was ideal during early stages of development of corm and cormels. Of the different media (White’s, SH and MS) tried, MS medium was found to be the best culture establishment (Stage 1) when supplemented with 3.0 mg 1-1 BAP. Elongated shoots of Stage I were subjected to shoot proliferation (Stage 2). Multiple axillary bud production was very high when the MS medium was supplemented with BAP 1.0 mg 1-1 and NAA 0.5 mg 1-1 or BAP 2.0 mg 1-1 and NAA 0.5 mg 1-1. Callus production from the base of the elongated shoots were observed when the concentration of NAA increased in the medium. Of the different cytokinins (BAP, kinetin and 2ip) tried, BAP was found to be the best in Stage 2. Frequent subculturing onto the MS medium containing BAP 2.0 mg 1-1 and NAA 0.5 mg 1-1 increased the production of multiple axillary buds. These when transferred to the MS medium devoid of growth regulators resulted in elongation of shoots. The elongated shoots produced maximum number of roots in the MS medium containing 1.0 mg 1-1 IBA under the exclusion of light. However, early rooting was obtained in MS liquid medium devoid of growth regulators. Plantlet survival was maximum when treated with 0.2 per cent Bavistin immediately after removing from the culture vessels, followed by treatment with 0.2 per cent mancozeb and norfloxacin at the time of transplanting and post planting treatment with 1/10 MS solution and drenching with triadimefon 20.0 mg 1-1 at three days interval inside improvised mist chamber. Direct organogenesis could be obtained from immature inflorescence segments in modified MS medium supplemented with 15.0 mg 1-1 NAA and 3.0 mg 1-1 BAP. Among the various explants tried for callus mediated organogenesis, callus index was the maximum (400) when immature inflorescence segments were inoculated to the modified MS medium supplemented with NAA 15.0 mg 1-1 in 16 h photoperiod and also in the medium supplemented with 15.0 mg 1-1 NAA + 2.0 mg 1-1 BAP and kept under exclusion of light. The callus derived from inflorescence segments differentiated into shoots in the MS medium supplemented with 3.0 mg 1-1 BAP and also in the medium supplemented with 1.0 mg 1-1 BAP and 0.5 mg 1-1 NAA. Callus also could be obtained from flower buds and flower bud bracts. The callus derived from the corm axillary buds and cormel tip explants in Stage 2, differentiated in the basal MS medium devoid of growth regulators or supplemented with 20.0 ml 1-1 coconut water and also in the medium with 0.5 mg 1-1 BAP. The root segments (both in vitro and in vivo) produced callus in MS medium supplemented with 1.0 mg 1-1 NAA and the differentiation was obtained in the medium containing 3.0 mg 1-1 BAP an 1.0mg 1-1 NAA. Leaf segments failed to develop callus. However, the explants collected from the leaf covering the inflorescence boot leaf) when cultured in modified MS medium supplemented with 15.0 mg 1-1 NAA and 1.0 mg 1-1 BAP and incubated under darkness for three months developed somatic embryos. In vitro corm production was noticed in the cultures, if planting out was delayed. Earliest and large sized corm induction was made possible in elongated shoots of gladiolus from Stage 2 in Ms medium containing 5.0 per cent sucrose, 0.5 mg 1-1 NAA and 5.0 mg 1-1 triadimefon kept under etiolated condition. The size of the in vitro produced corms enlarged from 0.2 cm to 2.3 cm in the MS liquid medium containing 5.0 per cent sucrose and 3.0 mg 1-1 triadimefon.