Loading...
Thumbnail Image

Kerala Agricultural University, Thrissur

The history of agricultural education in Kerala can be traced back to the year 1896 when a scheme was evolved in the erstwhile Travancore State to train a few young men in scientific agriculture at the Demonstration Farm, Karamana, Thiruvananthapuram, presently, the Cropping Systems Research Centre under Kerala Agricultural University. Agriculture was introduced as an optional subject in the middle school classes in the State in 1922 when an Agricultural Middle School was started at Aluva, Ernakulam District. The popularity and usefulness of this school led to the starting of similar institutions at Kottarakkara and Konni in 1928 and 1931 respectively. Agriculture was later introduced as an optional subject for Intermediate Course in 1953. In 1955, the erstwhile Government of Travancore-Cochin started the Agricultural College and Research Institute at Vellayani, Thiruvananthapuram and the College of Veterinary and Animal Sciences at Mannuthy, Thrissur for imparting higher education in agricultural and veterinary sciences, respectively. These institutions were brought under the direct administrative control of the Department of Agriculture and the Department of Animal Husbandry, respectively. With the formation of Kerala State in 1956, these two colleges were affiliated to the University of Kerala. The post-graduate programmes leading to M.Sc. (Ag), M.V.Sc. and Ph.D. degrees were started in 1961, 1962 and 1965 respectively. On the recommendation of the Second National Education Commission (1964-66) headed by Dr. D.S. Kothari, the then Chairman of the University Grants Commission, one Agricultural University in each State was established. The State Agricultural Universities (SAUs) were established in India as an integral part of the National Agricultural Research System to give the much needed impetus to Agriculture Education and Research in the Country. As a result the Kerala Agricultural University (KAU) was established on 24th February 1971 by virtue of the Act 33 of 1971 and started functioning on 1st February 1972. The Kerala Agricultural University is the 15th in the series of the SAUs. In accordance with the provisions of KAU Act of 1971, the Agricultural College and Research Institute at Vellayani, and the College of Veterinary and Animal Sciences, Mannuthy, were brought under the Kerala Agricultural University. In addition, twenty one agricultural and animal husbandry research stations were also transferred to the KAU for taking up research and extension programmes on various crops, animals, birds, etc. During 2011, Kerala Agricultural University was trifurcated into Kerala Veterinary and Animal Sciences University (KVASU), Kerala University of Fisheries and Ocean Studies (KUFOS) and Kerala Agricultural University (KAU). Now the University has seven colleges (four Agriculture, one Agricultural Engineering, one Forestry, one Co-operation Banking & Management), six RARSs, seven KVKs, 15 Research Stations and 16 Research and Extension Units under the faculties of Agriculture, Agricultural Engineering and Forestry. In addition, one Academy on Climate Change Adaptation and one Institute of Agricultural Technology offering M.Sc. (Integrated) Climate Change Adaptation and Diploma in Agricultural Sciences respectively are also functioning in Kerala Agricultural University.

Browse

Search Results

Now showing 1 - 8 of 8
  • ThesisItemOpen Access
    Development of low cost electrostatic spray-charging system for liquid formulations
    (Department of Farm Power Machinery and Energy, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 2016) Dipak Khatawkar, S; KAU; Dhalin, D
    The introduction of electrically charged sprays in agricultural application has become inevitable for better control on droplet transference with reduced drift and increase in application efficiency with less spray chemical requirements. In the present study was under taken to develop an electrostatic induction spray charging system as attachment to powered knapsack mist-blower. A high voltage generator was fabricated on the basis of Cockcroft-Walton voltage multiplier principle with input of 6 V DC battery to provide high voltage required at the developed charging electrode assembly (Model III, Model IV and Model V) for inducing electrostatic charge on spray droplets. As the existing (Model I) and redesigned (Model II) nozzle failed to give fine atomization, a self-atomizing hydraulic nozzle was developed for delivering the droplet spectrum required for effective electrostatic charge induction. The three working models (III, IV and V) were evaluated for charge to mass ratio (mC.kg-1) at five electrode potentials (1 kV, 2 kV, 3 kV, 4 kV and 5 kV), four electrode placement positions (0 mm, 5 mm, 10 mm and 15 mm) and five distances (50 cm, 100cm, 150 cm, 200 cm and 250 cm) from the nozzle. Model V with electrode voltage potential at 5 kV and EPP at 5 mm shown the maximum CMR value (1.088 mC.kg-1), followed by Model III (0.888 mC.kg-1) and Model IV (0.777 mC.kg-1) with same combination of variables. In contrast with commercial system (ESS-MBP90) it was observed that except at 50 cm distance from nozzle, Model V (at 4 kV and 5 kV) surpassed commercial system in CMR from 100 cm to 250 cm distance. To avoid air blast injury of plant, the nozzle has to be 100 cm to 150 cm away from the plant. The droplet spectrum of the developed system was analysed and observed that the size of droplets were 100 to 200 μm. The deposition efficiency of the developed system was on par with that commercial unit, and was within the range of 60 to 70 per cent. The developed system found to be cost effective and significantly consistent than the commercial system.
  • ThesisItemOpen Access
    Evaluation of physiological cost and subjective assessment of existing coconut climbing devices
    (Department of Farm Power Machinery and Energy, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 2015) Hameeda Bindu, Vahab; KAU; Bini, Sam
    At present there are different models of coconut climbing devices available in the market. Most of the climbing devices safety and efficiency aspects are not being studied and needs to be comparatively evaluated and modified. In this study five coconut climbing devices were selected, those are Sit and climb type (TNAU model), Standing type (Chemberi model), KAU coconut palm climber (developed at KCAET), Kerasureksha (Model developed at ARS, Mannuthy) and CPCRI model coconut climbing device. Pertinent anthropometric dimensions of human subjects with reference to the dimensions and positions of the functional components of coconut climbing devices was identified and 35 different body dimensions useful for the design or redesign of coconut climbing devices were recorded by following standard anthropometric procedure. Ten subjects (five each for men and women) were selected, conforming to statistical requirements of anthropometric dimensions. The selected ten subjects were screened for normal health through medical and bio-clinical investigations which includes Electro Cardio Graph (ECG), blood pressure and bio-clinical analysis. Selected ten subjects were calibrated in the laboratory by indirect assessment of oxygen uptake. The relationship between the heart rate and oxygen consumption of the subjects was found to be linear for all the subjects. Then energy cost of operation of the selected coconut climbing devices were computed by multiplying the oxygen consumed by the subject during the trial period with the calorific value of oxygen as 20.88 kJ lit-1. Energy cost is comparatively less for KAU coconut palm climber with other models. Mean energy cost of male subjects during the operation of KAU coconut palm climber is 23.16 kJ min-1 and female shows 25.73 kJ min-1. Variation of heart rate and energy cost of both male and female for selected five models were statistically analyzed. Female subjects are significantly differed in both heart rate and energy cost on different coconut climbing devices and all the female subjects showed minimum heart rate while operating KAU coconut palm climbing device. But male subjects are shown any significant difference for both heart rate and energy cost. But they shows comparatively less heart rate for KAU coconut palm climbing device. The oxygen uptake in terms of VO2 max was minimum for KAU coconut palm climber (58.53 per cent) while it was 65.22 per cent for Sit and climb type (TNAU model) for male operators. Similarly for female subjects, minimum for KAU coconut palm climber (74.30 per cent). Sit and climb type (TNAU model) is difficult in operation compared with other devices. Major discomfort was happened in left thigh, right thigh, left foot and right foot. Based on these results it was found that KAU coconut palm climber and Kerasuraksha coconut climbing device were identified as more suitable for climbers than other climbing devices. Seating unit of Kerasuraksha coconut climbing device and pedal unit of KAU coconut palm climber were ergonomically comfortable for the climbing operator and developed a new model by incorporating the constructional behavior of both KAU coconut palm climber and Kerasuraksha coconut climbing device. Energy expenditure of new model for male is decreased by the rate of 10.8per cent when compared to Sit and climb type (TNAU model and with KAU coconut palm climber it is comparable. In the case of female subjects, Energy cost of new model was decreased by 7.8 per cent with Kerasuraksha coconut climbing device and 6.2 per cent with Sit and climb type (TNAU model) and it is comparable with KAU coconut palm climber. Mean VO2, VO2 max and work pulse of new model is 1.10, 58.16 per cent and 69.70 beats min-1 for male and for female it is 1.22, 73.45 per cent and 81.10 beats min-1 respectively. These values are comparatively less than value of other five models. The time required for climbing new model was 65.01 sec for male subjects which are less than other five selected coconut climbing devices and same trend for female also. The setting time of the new model was 65 sec while for KAU coconut palm climber it was 150 sec. Time was reduced by 56.67 per cent compare to KAU coconut palm climber
  • ThesisItemOpen Access
    Ergonomic investigations on hand arm vibration of brush cutter for the development of a vibration reducing aid
    (Department of Farm Power Machinery and Energy, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 2016) Aswathi, K; KAU; Sureshkumar, P K
    Brush cutters are widely used in Kerala for weeding and clearing fields. While operating brush cutters, certain amount of vibration is transmitted to human body.Extended exposure to mechanical vibration can induce degeneration of the vascular and sensio-neural systems in the hand called hand-arm vibration syndrome (HAVS).The hand-arm vibration syndrome (HAVS) is a complex condition associated with vibration exposure and the use of hand-held vibrating machines. The vibration exposure of worker can be decreased by proper selection and maintenance of tool. To study the ergonomic aspects and hand transmitted vibrations of brush cutters, six subjects (3 male & 3 female) were selected who arehaving experience in operation of brush cutter.A suitable vibration reducing aid for brush cutters is designed and fabricated keeping the view that it should be capable of transmitting at least a part of the vibration produced at cutter head to the ground.It should be easily attached or detached from the brush cutters shaft.The material used for the vibration reduction aid should be light in weight and sturdy, so that it could be raised along with the cutter head by the operator. According to the conceptual design, a vibration reduction aid is developed and field tested. It consists of parts viz. curved arms, fixture to arms, quick fixing locks, ground rollers, rollers fixture and rubber grip. The brush cutter and vibration reducing aid is evaluated in the field with different cutter heads viz. nylon rope, 2 blade, 3 blade and circular blade. The experiment is repeated for 2-stroke and 4-stroke models of brush cutters operated by male and female subjects. The energy expenditure for brush cutter operation is calculated for two models of brush cutter for all subjects and compared. A statistical analysis is conducted using MSTAT software and found that the developed vibration reducing aid, blade and type of internal combustion engine have significant effect on vibration excitation in both right and left handles of brush cutters selected. The proposed method of evaluating occupational risk related to mechanical vibration exposure while working with brush cutter makes it possible to account the effect of attachment, cutter head and type of internal combustion engine. Subjective ratings like ODR, OER, OSR and BPDS also indicated significant effect of reducing vibration due to the vibration reducing aid.
  • ThesisItemOpen Access
    Design analysis of kau pokkali paddy harvester towards the development of its scale down prototype
    (Department of Farm Machinery and Power Engineering Kelappaji College of Agricultural Engineering and Technology, Tavanur, 2018) Venkata Reddy, H K; KAU; Jayan, P R
    The term ‘Pokkali’ used in the common parlor refers to a salt tolerant traditional rice cultivar grown in the coastal saline soils of Kerala, India. The Pokkali field is a unique eco-system prevailing in the coastal tract of Kerala with rich bio diversity and amazing capacity to produce organic rice and shrimp alternatively. Rice is grown during non-saline period and the farmers carry out shrimp culture during the saline phase with both having unique symbiotic benefits. Pokkali areas lie in Trissur, Ernakulum and Alappuzha districts covering a total area of 8500 ha. It spreads over 34 Krishibhavans of these three districts. In the saline, water-logged Pokkali farm lands, rice and shrimps are farmed alternatively. The conventional method of harvesting of Pokkali paddy crop by using sickles. The various farming operations in Pokkali paddy cultivation, the harvesting is done by women labourers by walking on the swampy and marshy inundated paddy fields at waist-deep water, which is laborious, tedious and cumbersome. Though a number of paddy combine harvesters are commercially available, none cannot be used in such marshy water logged areas for harvesting paddy. Hence, a power operated floating harvester with provisions for harvesting and conveying the ear heads (panicles) of submerged paddy was developed at KCAET, Tavanur. The overall size of the harvester is 9.6 x 2.2x 2.2 m with a total weight of about 3 tonnes. Due to the over size and weight, the manoeuvrability become a great problem for transportation and operation in small paddy lands. It necessitated designing a scale down proto type of the harvester to operate in all Pokkali areas for easy transportation and good manoeuvrability. The major functions of a Pokkali paddy harvester are floating in water/moving in puddled soil, cutting and conveying of the panicles. The design analysis of the harvester is sequentially carried out for the floating barge, harvesting unit and hydraulic system. Hydraulic drive system consisted of a hydraulic pump, pressure gauge, valves, filters, etc. to guide and control the system. The capacity of the hydraulic tank was 150 litres and double acting hydraulic pump has 61.0 l min-1. Harvesting unit of the Pokkali paddy harvester consists of a reel, cutter bar and conveyor. Reel delivers the stalks to the cutting mechanism, the cutter bar cuts crop and conveys through front conveyor and transferred to in the central conveyor. Width of the cutter bar was 2.1 m with serrated blade to avoid spilling of the stalks. The vertical centre of gravity of the harvester was designed as 0.854m and longitudinal centre of gravity as 4.58 m. It was found out that the design of the existing KAU Pokkali paddy harvester was perfect considering the buoyancy and stability aspects. The overall size of the newly designed scale down prototype is 6.2 x 1.7 x 1.7 m with a total weight of about 1700 kg. A scale down prototype of the harvester is designed in such a way that to suit for fragmented Pokkali areas. The vertical centre of gravity of the scale down prototype is 0.58 m, longitudinal centre of gravity is 2.67 m and transverse centre of gravity is zero. As the transverse centre of gravity is zero, scale down Pokkali paddy harvester is stable to float and longitudinal centre of gravity lies near to the centre and adjacent to the front and rear side of the harvester, it become a well-balanced machine.
  • ThesisItemOpen Access
    Design and development of artificial pollinizer for pollinating tropical vegetables under protected cultivation
    (Department of Farm Machinery and Power Engineering Kelappaji College of Agricultural Engineering and Technology, Tavanur, 2018) Ramya, R; KAU; Sureshkumar, P K
    Artificial pollination is a process that is highly require in vegetable crops grown under protected cultivation since, protected environment offers barriers to natural agents for pollination such as insects, wind or water. A study was undertaken to design and develop an artificial pollinizer for pollinating tropical vegetable crops under protected cultivation. To obtain preliminary data required for the design, floral and physical characteristics of flower, anther and pollen of selected tropical vegetable crops were studied in laboratory conditions. Accordingly a conceptual design was evolved and two models of artificial pollinizers were developed. Suitability of the developed pollinizer was evaluated in laboratory as well as field conditions. Results of the evaluation have been presented and analyzed. Six tropical vegetable crops were selected for the preliminary studies like floral characteristics, physical and dimensional measurements of flowers, anther and pollen grains were conducted in the laboratory. Sizes of pollen grains were measured by using Olympus Bx43 light microscope and the measurements were taken using the software Ultrascope version 9.1. Shape was determined from standard shape charts suggested by UPOV, 2007. The shape of pollen grains of tomato, pumpkin and ash guard are found to be „circular‟ with a Length/Width ratio ranging from 1: 1 to 1: 1.1. Pollen grain of chilli is „broad deltate‟ with L/W ratio of 1: 1.2. Pollen grains of water melon and cucumber are „narrow oblate‟ with a L/W ratio of 1: 1.13 to 1:1.15. Based on the preliminary studies, functional requirements and conceptual designs two models of the artificial pollinizers were designed and developed. Artificial pollinizer Model – I uses air as the medium for collection of pollen from flowers. Suction pressure developed by a vacuum pump suck the pollen grains from the male flower to a pollen collection chamber. The pollen collection unit is provided with a brush tip which detach the pollen grains from the flower and sucked by a vacuum pump are deposited in a pollen collection chamber. A screen mesh filter of 15 μm aperture is used in the chamber to prevent the pollen grains from carry away. Components of artificial pollinizer model – I includes pollen collection unit, pollen collection tube, adaptor for pollen collection chamber, pollen collection chamber, air tube, air tube adaptor, a connector and a vacuum pump. An electric powered air blower of 220 V, 50 Hz and 0.55kW is used as vacuum pump. The blower produces a suction velocity of 20-22 ms-1 at 13,000 rpm. Artificial pollinizer Model – II uses water as the medium for collection of pollen from male flowers. Water is sprayed from a nozzle to the male flower kept carefully in a pollen collection chamber. Water spray produced by a pneumatic hand pump from the nozzle wash out the pollen grains from the flower and is collected in the water tight container. Components of artificial pollinizer Model – II includes a spray nozzle, pneumatic hand sprayer, water container and pollen collecting chamber. Collected pollen can be sucked by a syringe for spraying to the female flower for artificial pollination. Dry pollen collected by Model – I is also mixed with water and used for artificial pollination using a syringe. Evaluation of artificial pollinizer was done by accessing pollen viability and fruit set efficiency. Viability of pollen was observed under laboratory condition and fruit set efficiency was observed under field conditions. From the studies it is observed that, pollen viability is decreasing with increase in storage period for both the crops. Maximum pollen viability is observed when artificial pollination was done with fresh pollen grains. Also, the viability is found higher for pollen stored in 1 % sucrose solution than pollens stored in plain water in both crops. Study on fruit set efficiency is also seems to be decreasing with increase in storage period for both the crops. Maximum fruit set efficiency is observed when artificial pollination was done with fresh pollen grains. Fruit set efficiency is higher for pollen stored in 1 % sucrose solution than pollens stored in plain water in both crops. Also the fruit set efficiency values are on par with manual pollination. Stages of fruit development in cucumber and watermelon crops are also observed on the 3 rd, 7th and 15th days after artificial pollination and found that the artificial pollination done using the artificial pollinizer was successful.
  • ThesisItemOpen Access
    Computer aided analysis of 'sit and stand' type coconut climbers for mechanical stability
    (Department of Farm Machinery and Power Engineering Kelappaji College of Agricultural Engineering and Technology, Tavanur, 2018) Pooja, V; KAU; Jayan, P R
    Coconuts are harvested by climbing the palm and cutting the nuts down by hand. Manually climbing up and down the palm is hazardous and tedious. Now a days a few models of mechanical coconut palm climbers are available to overcome these drawbacks. Testing the mechanical strength and stability of the coconut palm climbers is necessary to ensure its safe performance under working condition. Among these types, KAU and Farmer’s models were selected and its three dimensional models were generated in Solidworks 13.0 software. The static and fatigue analysis of these selected models were carried out in the ANSYS 15.0 software. The assembly of each component of the top and bottom frames of the models were created and saved in step file format. The file was then imported to the ANSYS 15.0 software for the static and fatigue analysis. Preprocessing steps such as meshing, selection of material and application of boundary conditions were then carried out sequentially to establish static and fatigue problems. In the KAU model top and bottom frames were steel and aluminium materials, wherein the Farmer’s model top and bottom frame were made of structural steel. The boundary conditions imposed are the application of loads and fixing of supports. Various loads of 400, 500, 600, 700, 800, 900 and 1000 N were applied and under each load the analysis was carried out. In the KAU model, the inner face of the bent tube and V tube and in the Farmer’s model, the rope and curve plate were considered as fixed supports. The static analysis interpreted were the equivalent (Von-Mises) stress, equivalent elastic strain and total deformation while fatigue analysis interpreted the fatigue life and factor of safety. The results showed that as the load increased the Von Mises stress was found increased. Also, there were decreasing trends for the factor of safety and fatigue life. The top frame of KAU models have factor of safety more than three, two and one up to 400, 500 and 1000 N load respectively. The infinite fatigue life cycles were observed up to 800 N. The bottom frame of KAU model have factor of safety more than one up to a load of 1000 N and have infinite fatigue life cycles up to 1000 N load. Hence KAU model is safe to operate up to a load of 1000 N. The top and bottom frames of the Farmer’s model also found out the factor of safety more than one and have infinite fatigue life cycles up to load of 1000 N. Hence Farmer’s model is safe to use up to a load of 1000 N. further changes in material, design or dimensions are suggested to get more factor of safety for loads from 700 to 1000 N for both the selected models. As there is no specified test codes available for manually operated mechanical tree climbers, a draft test code with Minimum Performance Standard (MPS) was also prepared under this study.
  • ThesisItemOpen Access
    Modification and testing of a coleus harvester
    (Department of Farm Power Machinery and Energy, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 2015) Younus, A; KAU; Jayan, P R
    Coleus (Solenostemon rotundifolius) commonly known as Chinese potato, is a major tuber crop of Kerala used for vegetable purpuse, raised purely as a rain fed crop from June to December. Manual harvesting of coleus is done by using spade, which is very tedious and time consuming, bruises and injuries. To overcome these problems and decreasing the cost of harvesting operation, a self propelled coleus harvester was modified and field tested. The developed coleus harvester was an attachment to a mini tiller, which consists of a prime mover, a digger, rotary blade, and driven wheels. As and when the tiller moves, digger pierced into the soil at a depth of 10-15 cm to digout the rhizomes that lie inside the soil. The uprooted coleus were then pushed out by means of the rotary splasher. The scattered coleus lying in the raised bed were collected easily and hence the harvesting becomes easier and faster. The rotary slasher are the rotating blades attached to the rear side of the tiller which was modified in such a way that they were removed and rubber flaps of 75 x 75 x 0.3 mm were fastened to the shank of the rotary blade. A set of larger wheels were designed and fabricated separately with diameter of 80 cm. The performance of the modified coleus harvester was compared with respect to time, fuel consumption, capacity and percentage of damage of coleus separately with flat and angular tynes. The performance on time taken (s) to dig out coleus with 6- tyne and 10 - tyne flat and angular digger revealed that while using 6 - tynes, the time taken and fuel consumption (ml) were highest in beds of 70 x 30 cm, whereas minimum were in the bed size of 50 x 30 cm The capacity of coleus harvester with 6 -tyne and 10 - tyne flat and angular diggers were determined. It is noted that the uprooted was the highest in beds of 50 x 20 cm, whereas minimum weight uprooted was in the bed size of 50 x 40 cm when operated with 6 flat tynes. When 10 angular tynes were used, it is noted that the weight (kg) of coleus uprooted was the highest in beds of 70 x 30 cm and minimum weight uprooted was in the bed size of 50 x 20 cm. Thus the average capacity of the harvester was observed as 1069 kg.h -1.The percentage of damage of coleus observed was the highest in beds of 70 x 30 cm, whereas minimum was in the bed size of 70 x 40 cm while using 6 - tynes. Performance analysis of a commercial harvester (TNAU ginger harvester) indicated that the vibrating mechanism provided was useful to obtain the coleus in clumps after harvest. In field operation it was not possible for uprooting coleus in the beds having more than 30 cm height. The field capacity of the modified coleus harvester is 0.057 ha.h-1. At the present wage rate of Rs 500 per day, the total cost of operation by manual method is about Rs 31,250 per ha. Whereas harvesting by the harvester, the total cost of operation is Rs 7680 per ha. Hence the savings over conventional method is Rs 24,470 per ha. The field efficiency of the harvester was calculated as 95 %. The performance of the machine was tested with two types of tynes - flat and angular with 6 - tyne and 10 - tynes. Time to harvest one bed of crop, fuel consumed for harvesting one bed, capacity of the harvester and percentage of damaged tubers were calculated. Among two types of flat tynes, the minimum time for harvesting one bed was achieved using 6 - tynes (21.66 min) and its fuel consumption was also less compared with 10 - of tynes. The average capacity of the machine was obtained as 1061 kg h-1.Percentage of damaged tubers was 5% corresponding to 6 - tynes. In the case of angular tynes, the shortest time for harvesting was achieved with 10 - tynes and the corresponding fuel consumption was 19 m1. The percentage of damaged tubers was 8% with 10 - tynes and was little high compared with 6 - tynes.
  • ThesisItemOpen Access
    Investigations on the adaptability of wireless sensor networks (WSN) based technology for harvesting crops
    (College of Agricultural Engineering and Technology, Kelappaji, 2016) Ayisha, Mangat; KAU; Shivaji, K P
    Harvesting has been identified as one of the critical and resource consuming operation because of several reasons especially inside polyhouse structures. Knowledge of physical properties of crops and fruits like cucumber plays an important role in the design and optimization of its machinery. Evaluation of these properties like plant height, leaf numbers, leaf length, leaf width, fruit length and width were taken for observation. It was seen that, these properties had a direct impact on deciding the components of the harvester. Plant height determined the height of the harvester; leaf parameters decided the obstacle parameters in the work space. Fruit holding capacity of the cutting unit was depended on fruit parameters. By analyzing all these data and the past work in the field of robotics, a preliminary model of a harvester was fabricated. Out of the harvesters developed so far in the field of agriculture, the most simple and economical method was selected for this study. The principle of linear actuators was adapted for the design of the harvester by incorporating screw rods and DC motors. The basic components for the harvester were identified with three Degrees of Freedom. The moving unit with wheels contributes to the motion in X direction. The vertical screw thread makes the movement in Y direction and the horizontal unit gives the motion in Z direction. By studying the biometric properties of plants and crops, the height of the harvester was confined to 2 m, width of horizontal unit as 45 cm and the base platform with 45X45 cm. A control board was used for controlling the motors which causes motion for the threaded rods. Accordingly, a laboratory model was fabricated and its functionality was tested. It was found working successfully in the laboratory conditions. The current trend in high-tech agriculture is towards switching from a manual system to automatic operations. Hence, the present study is a promising technology that can be converted to a fully automatic machine with future developments.