Loading...
Thumbnail Image

Kerala Agricultural University, Thrissur

The history of agricultural education in Kerala can be traced back to the year 1896 when a scheme was evolved in the erstwhile Travancore State to train a few young men in scientific agriculture at the Demonstration Farm, Karamana, Thiruvananthapuram, presently, the Cropping Systems Research Centre under Kerala Agricultural University. Agriculture was introduced as an optional subject in the middle school classes in the State in 1922 when an Agricultural Middle School was started at Aluva, Ernakulam District. The popularity and usefulness of this school led to the starting of similar institutions at Kottarakkara and Konni in 1928 and 1931 respectively. Agriculture was later introduced as an optional subject for Intermediate Course in 1953. In 1955, the erstwhile Government of Travancore-Cochin started the Agricultural College and Research Institute at Vellayani, Thiruvananthapuram and the College of Veterinary and Animal Sciences at Mannuthy, Thrissur for imparting higher education in agricultural and veterinary sciences, respectively. These institutions were brought under the direct administrative control of the Department of Agriculture and the Department of Animal Husbandry, respectively. With the formation of Kerala State in 1956, these two colleges were affiliated to the University of Kerala. The post-graduate programmes leading to M.Sc. (Ag), M.V.Sc. and Ph.D. degrees were started in 1961, 1962 and 1965 respectively. On the recommendation of the Second National Education Commission (1964-66) headed by Dr. D.S. Kothari, the then Chairman of the University Grants Commission, one Agricultural University in each State was established. The State Agricultural Universities (SAUs) were established in India as an integral part of the National Agricultural Research System to give the much needed impetus to Agriculture Education and Research in the Country. As a result the Kerala Agricultural University (KAU) was established on 24th February 1971 by virtue of the Act 33 of 1971 and started functioning on 1st February 1972. The Kerala Agricultural University is the 15th in the series of the SAUs. In accordance with the provisions of KAU Act of 1971, the Agricultural College and Research Institute at Vellayani, and the College of Veterinary and Animal Sciences, Mannuthy, were brought under the Kerala Agricultural University. In addition, twenty one agricultural and animal husbandry research stations were also transferred to the KAU for taking up research and extension programmes on various crops, animals, birds, etc. During 2011, Kerala Agricultural University was trifurcated into Kerala Veterinary and Animal Sciences University (KVASU), Kerala University of Fisheries and Ocean Studies (KUFOS) and Kerala Agricultural University (KAU). Now the University has seven colleges (four Agriculture, one Agricultural Engineering, one Forestry, one Co-operation Banking & Management), six RARSs, seven KVKs, 15 Research Stations and 16 Research and Extension Units under the faculties of Agriculture, Agricultural Engineering and Forestry. In addition, one Academy on Climate Change Adaptation and one Institute of Agricultural Technology offering M.Sc. (Integrated) Climate Change Adaptation and Diploma in Agricultural Sciences respectively are also functioning in Kerala Agricultural University.

Browse

Search Results

Now showing 1 - 1 of 1
  • ThesisItemOpen Access
    Computer aided analysis of 'sit and stand' type coconut climbers for mechanical stability
    (Department of Farm Machinery and Power Engineering Kelappaji College of Agricultural Engineering and Technology, Tavanur, 2018) Pooja, V; KAU; Jayan, P R
    Coconuts are harvested by climbing the palm and cutting the nuts down by hand. Manually climbing up and down the palm is hazardous and tedious. Now a days a few models of mechanical coconut palm climbers are available to overcome these drawbacks. Testing the mechanical strength and stability of the coconut palm climbers is necessary to ensure its safe performance under working condition. Among these types, KAU and Farmer’s models were selected and its three dimensional models were generated in Solidworks 13.0 software. The static and fatigue analysis of these selected models were carried out in the ANSYS 15.0 software. The assembly of each component of the top and bottom frames of the models were created and saved in step file format. The file was then imported to the ANSYS 15.0 software for the static and fatigue analysis. Preprocessing steps such as meshing, selection of material and application of boundary conditions were then carried out sequentially to establish static and fatigue problems. In the KAU model top and bottom frames were steel and aluminium materials, wherein the Farmer’s model top and bottom frame were made of structural steel. The boundary conditions imposed are the application of loads and fixing of supports. Various loads of 400, 500, 600, 700, 800, 900 and 1000 N were applied and under each load the analysis was carried out. In the KAU model, the inner face of the bent tube and V tube and in the Farmer’s model, the rope and curve plate were considered as fixed supports. The static analysis interpreted were the equivalent (Von-Mises) stress, equivalent elastic strain and total deformation while fatigue analysis interpreted the fatigue life and factor of safety. The results showed that as the load increased the Von Mises stress was found increased. Also, there were decreasing trends for the factor of safety and fatigue life. The top frame of KAU models have factor of safety more than three, two and one up to 400, 500 and 1000 N load respectively. The infinite fatigue life cycles were observed up to 800 N. The bottom frame of KAU model have factor of safety more than one up to a load of 1000 N and have infinite fatigue life cycles up to 1000 N load. Hence KAU model is safe to operate up to a load of 1000 N. The top and bottom frames of the Farmer’s model also found out the factor of safety more than one and have infinite fatigue life cycles up to load of 1000 N. Hence Farmer’s model is safe to use up to a load of 1000 N. further changes in material, design or dimensions are suggested to get more factor of safety for loads from 700 to 1000 N for both the selected models. As there is no specified test codes available for manually operated mechanical tree climbers, a draft test code with Minimum Performance Standard (MPS) was also prepared under this study.