Loading...
Thumbnail Image

Kerala Agricultural University, Thrissur

The history of agricultural education in Kerala can be traced back to the year 1896 when a scheme was evolved in the erstwhile Travancore State to train a few young men in scientific agriculture at the Demonstration Farm, Karamana, Thiruvananthapuram, presently, the Cropping Systems Research Centre under Kerala Agricultural University. Agriculture was introduced as an optional subject in the middle school classes in the State in 1922 when an Agricultural Middle School was started at Aluva, Ernakulam District. The popularity and usefulness of this school led to the starting of similar institutions at Kottarakkara and Konni in 1928 and 1931 respectively. Agriculture was later introduced as an optional subject for Intermediate Course in 1953. In 1955, the erstwhile Government of Travancore-Cochin started the Agricultural College and Research Institute at Vellayani, Thiruvananthapuram and the College of Veterinary and Animal Sciences at Mannuthy, Thrissur for imparting higher education in agricultural and veterinary sciences, respectively. These institutions were brought under the direct administrative control of the Department of Agriculture and the Department of Animal Husbandry, respectively. With the formation of Kerala State in 1956, these two colleges were affiliated to the University of Kerala. The post-graduate programmes leading to M.Sc. (Ag), M.V.Sc. and Ph.D. degrees were started in 1961, 1962 and 1965 respectively. On the recommendation of the Second National Education Commission (1964-66) headed by Dr. D.S. Kothari, the then Chairman of the University Grants Commission, one Agricultural University in each State was established. The State Agricultural Universities (SAUs) were established in India as an integral part of the National Agricultural Research System to give the much needed impetus to Agriculture Education and Research in the Country. As a result the Kerala Agricultural University (KAU) was established on 24th February 1971 by virtue of the Act 33 of 1971 and started functioning on 1st February 1972. The Kerala Agricultural University is the 15th in the series of the SAUs. In accordance with the provisions of KAU Act of 1971, the Agricultural College and Research Institute at Vellayani, and the College of Veterinary and Animal Sciences, Mannuthy, were brought under the Kerala Agricultural University. In addition, twenty one agricultural and animal husbandry research stations were also transferred to the KAU for taking up research and extension programmes on various crops, animals, birds, etc. During 2011, Kerala Agricultural University was trifurcated into Kerala Veterinary and Animal Sciences University (KVASU), Kerala University of Fisheries and Ocean Studies (KUFOS) and Kerala Agricultural University (KAU). Now the University has seven colleges (four Agriculture, one Agricultural Engineering, one Forestry, one Co-operation Banking & Management), six RARSs, seven KVKs, 15 Research Stations and 16 Research and Extension Units under the faculties of Agriculture, Agricultural Engineering and Forestry. In addition, one Academy on Climate Change Adaptation and one Institute of Agricultural Technology offering M.Sc. (Integrated) Climate Change Adaptation and Diploma in Agricultural Sciences respectively are also functioning in Kerala Agricultural University.

Browse

Search Results

Now showing 1 - 3 of 3
  • ThesisItemOpen Access
    Effect of preservatives on milk solids in cow and buffalo milk
    (Department of Dairy Science, College of Veterinary and Animal Sciences, Mannuthy, 2001) Radha, K; KAU; Sathian, C T
    Pooled milk samples were collected from cow and buffaloes maintained at the University Livestock Farm at weekly intervals. Three chemical preservatives viz., formalin (0.4 per cent), potassium dichromate (0.4 per cent) and bronopol (0.1 per cent) were studied for their efficiency of preservation. Calculated levels of preservatives were added and the samples were stored at room temperature in dark place. Major milk constituents like fat, total solids and solids not fat were estimated in control and preserved samples. Physical properties of milk such as pH, titratable acidity, clot on boiling test, lactometer reading as well as efficiency of preservation were studied in control and preserved milk samples .. Milk samples treated with formalin could be stored up to 90 days without any spoilage changes. A cream plug formed after 24 hours of storage and a white sedimentation at the bottom appeared after one month of storage. Potassium dichromate treated samples could be stored for 30 days. There after the samples curdled and became green in colour towards the end of the storage period. 11 Bronopol preserved cow and buffalo milk samples could be stored for 24 and 16 days respectively and samples became mild pink in colour as the storage period advanced. There was a significant increase in titratable acidity in cow and buffalo milk samples preserved with all the three chemical preservatives. The increase in acidity was steady and progressive in formalin and bronopol preserved samples. But an abrupt increase in acidity was noticed in potassium dichromate preserved samples immediately after the addition of preservative and there after a successive decrease was noticed. The pH values showed a significant decline during storage in preserved milk samples. Decline in pH was abrupt in potassium dichromate treated samples whereas it was gradual in samples treated with the other two preservatives. Formalin heated milk samples remained COB negative throughout the storage period of 90 days, whereas potassium dichromate and bronopol treated samples became COB positive after 15 and eight days of storage respectively. No significant variation was noticed in fat percentage of preserved milk samples estimated by Gerber method. But a slight decrease in fat per cent was observed in formalin and III potassium dichromate treated samples. The concentration of Sulphuric acid used was increased to 94 per cent for estimating fat percentage in formalin preserved milk samples. Formalin preserved samples showed inconsistent changes in fat percentage estimated by Milko- Tester. So this method cannot be recommended for formalin preserved milk samples. Bronopol treated milk samples showed lesser variation in milk fat percentage estimated by Milko-Tester when compared to potassium dichromate and formalin. There was a non-significant increase in total solids and solids not fat content in potassium dichromate preserved samples. Potassium dichromate preserved samples showed significant increase in lactometer reading, where as formalin and bronopol treated samples did not show any significant changes in lactometer reading. Formalin appears to be ideal for the existing standard methods of estimating milk solids. With the popularization of instrumental methods for fast and accurate analysis of milk constituents, formalin will not be suitable as a milk sample preservative in future. Further, formalin and potassium dichromate have deleterious effects on human health and environment. Even though bronopol is little expensive, it is best suited for instrumental analysis of milk constituents and safe for handlers. So, bronopol is recommended as a preservative for the near future.
  • ThesisItemOpen Access
    Use of condensed coconut water in yoghurt
    (Department of Dairy Science, College of Veterinary and Animal Sciences, Mannuthy, 1996) Malarkannan, S P; KAU; Geevarghese, P I
    An attempt was made to incorporate condensed coconut water in partial replacement of MSNF at 25 and 50 per cent level in yoghurt and to study the properties of the product which were compared with normal yoghurt. An exhaustive review of literature on the various physico – chemical properties of yoghurt and other fermented milk products has been presented. The procedure for the analysis of coconut water and condensed coconut water for its chemical composition, mineral profile and method of condensation has been described. The quantity of ingredients for yoghurt preparation was derived by linear programming model. The treatments were divided into TC (control), T2 (25 per cent replacement of MSNF using condensed coconut water without gelatin), T3 (T2 + gelatin at 0.5 per cent level), T4 (50 per cent replacement of MSNF using condensed coconut water without gelatin) and T5 (T4 + 0.5 per cent gelatin). A pre – trial was conducted to find out the ideal combination of starter culture and gelatin to be added to give good quality yoghurt. A combination of four per cent starter culture with 0.5 per cent gelatin produced good quality yohurt and this combination was used in the subsequent trials. A pilot heat stability test was conducted in treatment mixes to find out the amount of trisodium citrate required to provide sufficient heat stability. Yoghurt mixes prepared were analysed for titratable acidity, pH and total solids. Statistical analysis revealed no significant difference between control and treatments for the above. No significant difference was observed in pH and fat between the control and treatments. A significant difference (P < 0.01) in titratable acidity, protein and NPN percentage was observed between control and treatments. The curd tension and viscosity showed a decreasing trend with increasing level of replacement but this properties improved to certain extent by addition of gelatin. The setting time and NPN content showed an increasing trend as replacement level increased and this may be due to high mineral and NPN content in coconut water. There was no significant difference in tyrosine value between the control and treatments T2 and T3. No significant difference was observed in L. bulgaricus count and coliform count between control and treatments, whereas but S. thermophiles and yeast and mould count showed significant difference between control and treatments which may be due to a stimulatory factor in coconut water for yeast and mould and inhibitory factor for S. thermophiles resulting in slow growth. Organoleptic quality revealed that 25 per cent replacement of MSNF with or without addition of gelatin produced comparable scores as that of control yoghurt. A savings of 13.95 per cent and 8.14 per cent in cost can be achieved by 25 per cent replacement of MSNF with or without addition of gelatin respectively. The results of the experiment revealed that 25 per cent replacement of MSNF with condensed coconut water can be successfully tried in preparing yoghurt without affecting the physic – chemical and organoleptic properties together with considerable reduction in cost.
  • ThesisItemOpen Access
    Microbiological quality and shelf-life of raw cow`s milk preserved by lactoperoxidase system
    (Department of Dairy Science, College of Veterinary and Animal Sciences, Mannuthy, 1998) Selvin Joe, J; KAU; Mukundan, M
    A detailed study was carried out to determine the micro-biological quality and shelf- life of raw cow's milk preserved by lactoperoxidase (LP) system. Literature related to the LP-system have been reviewed . •• A total of 6 trails were conducted to obtain reliable data for statistical analysis. In each trail, three litres of raw cow milk was divided into three equal parts of one litre each. One part was kept as a control (C) and LP-system was activated in the other two parts one part with 20: 10ppm (Tl) and other with 20:20ppm (T2) (SCN-:H202), with in two hours of production of milk. The milk samples were stored at 30 +1 DC . . Before the activation of LP- system the micro-biological quality of raw milk, samples were analysed. After the activation of LP-system the micro-biological quality of control and experimental group milk samples were analysed once in every 3 hours, till the samples showed positive on clot-on-boiling (COB) test. Standard plate count, Coliform count, Titratahle acidity, pH, Methylene blue reduction time, one hour Resazurin reduction test, Clot-on boiling test and Alizarin - Alcohol test were the parameters studied. The mean initial SPC of milk samples was 5.280 log cfu per ml. The control milk samples remained 'Good' quality only for 3 hours storage, while the LP-treated milk samples of both Tl and T2 remained 'Good' quality even after 9 hours of storage. 11 \ 1 \ 383 The standard plate count and coliform count (CC) of control milk samples showed a steady increase from the initial period itself, whereas in the LP-treated milk samples of T1 and T2 the SPC and CC showed a reduction than the initial count after 3 hours of storage and both SPC and CC slightly exceeded the initial count even after 6 hour of storage . .. Based on the titratable acidity, the control milk had the acceptable quality (0.18 per cent lactic acid) of only upto 6 hours while the LP-treated milk remained with in the acceptable limit for 12 h. According to the Alizarin - Alcohol test, the control milk remained stable only for 3 hours and the LP- treated milk remained stable for 9 hours of storage at 30+ 1 DC. The milk samples of control group had the shelf-life of 12 hours where as the LP-treated milk samples of T1 and T2 had the shelf-life of 18 hours based on the clot-on-boiling test. The micro-biological quality and shelf-life of milk samples, both T1 and T2 did not show significant difference during the entire period of storage.