Loading...
Thumbnail Image

Kerala Agricultural University, Thrissur

The history of agricultural education in Kerala can be traced back to the year 1896 when a scheme was evolved in the erstwhile Travancore State to train a few young men in scientific agriculture at the Demonstration Farm, Karamana, Thiruvananthapuram, presently, the Cropping Systems Research Centre under Kerala Agricultural University. Agriculture was introduced as an optional subject in the middle school classes in the State in 1922 when an Agricultural Middle School was started at Aluva, Ernakulam District. The popularity and usefulness of this school led to the starting of similar institutions at Kottarakkara and Konni in 1928 and 1931 respectively. Agriculture was later introduced as an optional subject for Intermediate Course in 1953. In 1955, the erstwhile Government of Travancore-Cochin started the Agricultural College and Research Institute at Vellayani, Thiruvananthapuram and the College of Veterinary and Animal Sciences at Mannuthy, Thrissur for imparting higher education in agricultural and veterinary sciences, respectively. These institutions were brought under the direct administrative control of the Department of Agriculture and the Department of Animal Husbandry, respectively. With the formation of Kerala State in 1956, these two colleges were affiliated to the University of Kerala. The post-graduate programmes leading to M.Sc. (Ag), M.V.Sc. and Ph.D. degrees were started in 1961, 1962 and 1965 respectively. On the recommendation of the Second National Education Commission (1964-66) headed by Dr. D.S. Kothari, the then Chairman of the University Grants Commission, one Agricultural University in each State was established. The State Agricultural Universities (SAUs) were established in India as an integral part of the National Agricultural Research System to give the much needed impetus to Agriculture Education and Research in the Country. As a result the Kerala Agricultural University (KAU) was established on 24th February 1971 by virtue of the Act 33 of 1971 and started functioning on 1st February 1972. The Kerala Agricultural University is the 15th in the series of the SAUs. In accordance with the provisions of KAU Act of 1971, the Agricultural College and Research Institute at Vellayani, and the College of Veterinary and Animal Sciences, Mannuthy, were brought under the Kerala Agricultural University. In addition, twenty one agricultural and animal husbandry research stations were also transferred to the KAU for taking up research and extension programmes on various crops, animals, birds, etc. During 2011, Kerala Agricultural University was trifurcated into Kerala Veterinary and Animal Sciences University (KVASU), Kerala University of Fisheries and Ocean Studies (KUFOS) and Kerala Agricultural University (KAU). Now the University has seven colleges (four Agriculture, one Agricultural Engineering, one Forestry, one Co-operation Banking & Management), six RARSs, seven KVKs, 15 Research Stations and 16 Research and Extension Units under the faculties of Agriculture, Agricultural Engineering and Forestry. In addition, one Academy on Climate Change Adaptation and one Institute of Agricultural Technology offering M.Sc. (Integrated) Climate Change Adaptation and Diploma in Agricultural Sciences respectively are also functioning in Kerala Agricultural University.

Browse

Search Results

Now showing 1 - 4 of 4
  • ThesisItemOpen Access
    Characterisation and evaluation of the dwarf cattle of Kerala
    (Department of Animal Breeding and Genetics, College of Veterinary and Animal Sciences, Mannuthy, 1994) Girija, C R; KAU; Sosamma, Iype
    The native cattle of Kerala have been treated as non descript animals always eventhough they possess some special features. The dwarf cattle often called as Vechur were very popular in Central Travancore until 35 years back. With the emergence of the crossbred population of cattle the traditionally reared local cattle have gradually suffered genetic erosion. Under this circumstance, the present work was undertaken to characterize and evaluate the germplasm of local dwarf cattle of Kerala by studying (a) the karyotype and morphology of chromosomes using G-banding (b) the population structure by means of gene frequencies of different blood proteins (c) the growth and production performance. The characterization and the evaluation would help in finding out the genetic differences of the dwarf cattle which will help in deciding about the conservation of their germplasm as a reserve for the future. The dwarf cattle maintained under the ICAR scheme on “Conservation of germplasm of Vechur cattle of the coastal area and the dwarf cattle of the high ranges of Kerala” formed the material for the study. The characterization and evaluation was carried out through the cytogenetic, immunogenetic and polymorphism studies as well as through the description of the growth and production traits. Karyotype analysis was carried out using peripheral blood leukocyte culture technique described by Halnan (1977) and Halnan (1989) with suitable modifications. G-banding of chromosomes were done by the method described by Thiagarajan (1993). Blood protein polymorphism systems such as Haemoglobin and transferring were studied by poly acrylamide gel electrophoresis in horizontal dimension. (Gahne et. al. 1977) with suitable modifications. The statistical analysis of the growth and production data were done as suggested by Snedecor and cochran (1967). The diploid chromosome number of the dwarf cattle was found to be 60, with 29 pairs of autosomes and one pair of sex chromosomes. All the autosomes and the ‘Y’ chrosome were acrocentric. The X chromosome was submetacentric. The relative length of the autosomes ranged from 1.757 to 5.431 per cent. The relative length of the X and Y chromosomes were found to be 5.591 per cent and 2.875 per cent respectively. In the karyological array, the X chromosome occupied the first position. The X chromosome was biarmed and the arm ratio and centromere index obtained were 2.182 and 0.314 respectively. The karyotype and morphometric measurements resembled the finding in Bos indicus group of cattle. The G-banding pattern of chromosomes revealed 72 regions and 314 G-bands. The Y chromosome had 7 G-bands in the ‘q’ arm which resembled the ‘q’ arm of Bos taurus described in the international system for cytogenetic nomenclature of domestic animals. There were two haemoglobin variants HbA and HbB and three phenotypes viz. HbAA, ,HbAB and HbBB , in the population. The heterozygocity was found to be 0.4815. The population was found to be in genetic equilibrium with respect to the Haemoglobin locus. Six transferring phenotypes controlled by three alleles TfA, TfD and TfE were observed. The frequency of TfE (0.359) allele in the dwarf cattle was as high as the frequency of the allele reported in the zebu cattle. The absence of transferring variants like TfF, TfH, TfN and TfG and higher frequency of TfE allele are probably indicative of the genetic isolation of the population from exotic breeds. The absence of TfB and TfF allele which is present in Gir, Hariana, Kankrej, Kangayam, Ongole, Red Sindhi, Sahiwal and Tharparkar also indicates that the dwarf cattle has not inherited genes from the above cattle breeds. The body weights and measurements of calves at birth studied showed that the male calves had a higher body weight (12.55 ± 0.31 kg with a CV of 7.86 per cent) than female calves (10.78 ± 0.40 kg with a CV of 15.02 per cent). The same trend was observed with regard to the birth body measurements also. The heart girth measurement and body weight showed a positive correlation from birth to the 24th fortnight. There is a 100 per cent increase in the birth weight by the 5th fortnight and a three-fold increase by the 10th fortnight. The average daily gain in weight for the four periods I e., fortnights 0-6, 7-12, 13-18 and 19-24 were 0.160 ± 0.011, 0.167 ± 0.018, 0.212 ± 0.011 and 0.139 ± 0.015 respectively for female calves and 0.188 ± 0.023, 0.145 ± 0.016, 0.116 ± 0.025, 0.242 ± 0.049 kg respectively in male calves. During the period from birth to 6th fortnight the growth rates in males and females were similar. The gain in body weight per day during the periods from 7 to 12th and 13 to 18th fortnight was comparatively less for males but the trend reversed during the period of fortnights for 19 to 24th. The average body weights of adult females and males were 126.90 ± 3.56 kg (CV 16.39%) and 210 ± 15.75 kg (CV 14.95%) respectively. The body measurements such as length, heart girth and height (in cms) in females were 97.5 ± 1.12 (CV 5.85%), 115.60 ± 1.32 (CV 5.82%) and 87.53 ± 0.82 (CV 4.82%) respectively. The corresponding figures in males were 111.5 ± 3.77 (CV 6.76%), 146.0 ± 2.92 (CV 3.99%) and 107.5 ± 1.35 (CV 2.50%) respectively. The average body weights and measurements were lesser than those reported in other Indian breeds and crossbred cattle. The total lactation milk production performance of the dwarf cattle was 471.68 ± 38.72 kg (CV 45.29%) in an average lactation length of 217 ± 16.50 days (CV 32.20%). The average daily yield was 2.17 ± 0.11 kg (CV 29.48%). The dwarf cattle attained a peak yield of 3.71 ± 0.16 kg (CV 21.5%) in 23.23 ± 1.703 days (CV 37.38%). The milk production performance eventhough was lesser than crossbreds or some recognized Indian breeds, the milk production in comparison with the body size was reasonable. Considering the morphology of the Y chromosome, the Hb as well as Tf polymorphism and their allelic frequencies, it is to be summarized that the stock of dwarf cattle of Kerala maintained at Kerala Agricultural University is genetically isolated from the other cattle breeds of the country and world. The body size and milk production of the cow indicates its suitability for a farmer who requires milk just for home consumption. The study strongly confirms the necessity of conservation of the dwarf cattle of Kerala which is the smallest variety available in India and perhaps in the world itself.
  • ThesisItemOpen Access
    Chromosome profile of zebu x taurus cattle in Kerala
    (Department of Animal Breeding and Genetics, College of Veterinary and Animal Sciences, Mannuthy, 1988) Raghunandanan, K V; KAU; Mukundan, G
    A study was undertaken to evaluate and compare the chromosomal status of Local non – descript, half – bred Jersey, half – bred Holstein Friesian and Jersey cattle and to assess the incidence of chromosomal aberrations causing physiological disorders. The cattle owned by Kerala Agricultural University. Indo – Swiss Project and farmers formed the material for the study. In all, 102 animals consisting of 71 normal and 31 abnormal, were subjected to the study. Peripheral blood leukocyte culture technique with heparinised whole blood was used for chromosome analysis. The medium was TC 199 with phytohaemagglutinin M as mitotic inducer and colchicine as mitotic arrester. The cells in metaphase were harvested and air dried smears stained with Giemsa. Good spreads were photographed and karyotypes prepared. The efficiency of medium was tested using mitotic drive and mitotic index, which were between 32 to 33 per cent and 5 to 6 per cent respectively. Colchicine treatment of 0.1 ml (0.0001%) for 1 hour yielded clear visible chromosome spreads. The blood samples stored for varying time at 50C indicated that the whole blood transported in ice bath (50 C) is to be used within 12 hours after collection for lymphocyte culture. In normal cattle, diploid chromosome number was found to be 2n = 60 with 29 pairs of autosomes and one pair sex chromosome. The males were heterogametic. All the autosomes were acrocentric in Local, half – bred Jersey, half – bred Friesian and Jersey whereas the x chromosome was biarmed and a large submetacentric in all the genetic groups. The Y chromosome was polymorphic being acrocentric in Local and submetacentric in exotic bulls. No satellite was observed in any of the chromosomes. The relative length of largest and smallest autosomes were 6.5080 and 1.3473 per cent in Local, 6.4735 and 1.2250 per cent in half – bred Jersey, 6.2190 and 1.3788 per cent in half – bred Friesian and 6.9125 and 1.3096 per cent in Jersey respectively. The difference in relative length of autosomes between different genetic groups was not found to be significant. The relative length of x chromosome was 7.2838 per cent, 7.0313 per cent, 6.5138 per cent and 6.3166 per cent in Local, half – bred Jersey, half - bred Friesian and pure Jersey respectively. The differences between genetic groups were significant. In the karyotypic array based on relative length, the x chromosome occupied a first position in Local, half – bred Jersey, half – bred Friesian whereas in Jersey it was in between first and second pair of autosomes. The relative length of Y chromosome was 2.9415 per cent, 2.5745 per cent and 2.9375 per cent in Local, Jersey and Holstein Friesian respectively. The difference Local and Holstein Friesian was not significant. In karyological array the Y chromosome occupied a position between 15th and 16th pair of autosomes in Local and Holstein Friesian whereas in Jersey it was between 15th and 20th pair. The arm ratio of x chromosome was 2.043, 1.986, 1.739 and 1.690 in Local, half – bred Jersey, half – bred Friesian and Jersey respectively. In Local cattle the centromere was located away from mid point compared to other genetic groups. The distance between mid point and centromere was lowest in Jersey. The arm ratio of Y chromosome of Jersey and Holstein Friesian was 1.21 and 1.66 respectively. The location of centromere in Y chromosome of Jersey was more towards centre than that of Holstein Friesian. The centromere index of x chromosome was 0.365, 0.329, 0.338 and 0.372 in Local, half – bred Jersey, half – bred Holstein Friesian and Jersey respectively. The values for the centromere index confirm the findings obtained for arm ratio with regard to the proximity of centromere to the mid point of the chromosome. Among the 31 abnormal cattle, chromosomal aberration were observed in one 4 ½ years old sterile Jersey heifer, one Free martin and one Local bullock with abnormally developed secondary sexual characters. Infertile cattle showing repeat breeding, poor semen quality and poor libido did not exhibit any aberration. In the sterile Jersey heifer, 59/60 mosaicism was observed. The Free martin exhibited 60 XX/60 XY chimaerism having 14 per cent of the cells with XY type and others with XX type. The local bullock revealed abnormal development of teats and secretion of milky fluid. The mitotic spreads were of tetraploid nature (4n = 120) in 4.5 per cent cells and the diploid (2n = 60) in others. This animal was diploid tetraploid chimaera or mixoploid. The present study brought out findings that relative length, position in the karyotypic array, arm ratio and centromere index of sex chromosomes shall serve as tool for identification of inter – breed differences and that the occurrence of tetraploidy stimulate the activity of the female secondary sexual characteristics in male cattle.
  • ThesisItemOpen Access
    Blood group and biochemical polymorphism in the Malabari breed of goat and its exotic crosses
    (Department of Animal Breeding and Genetics, College of Veterinary and Animal Sciences, Mannuthy, 1989) Nandakumaran, P; KAU; Mukundan, G
    Realising the importance of blood groups and biochemical polymorphism in livestock improvement a study was undertaken in 305 adult goats of Malabari breed and its exotic crosses viz. Saanen x Malabari and Alpine x Malabari, to identify the blood group factors and polymorphism, if any, at haemoglobin, potassium and erythrocyte glutathione (GSH) loci and their utility as genetic markers for selection. Standard haemolytic test and absorption technique were performed to produce monovalent reagents and to type the goats. The different haemoglobin types were detected employing horizontal starch gel electrophoresis. The potassium concentration in whole blood and the GSH concentration in erythrocytes were estimated by Flamephotometry and Spectrophotmetry respectively. Twelve blood group reagents M1, M2, M3, M4, M5, M6, M7, M8, M9, M10, M11 and M12 were produced during the present study from the nineteen polyvalent goat sera obtained from Switzerland. The phenotypic frequencies of different blood group factors were different from each other among the three genetic groups. The blood group factors M4, M10 and M12 were not observed in the Malabari goats. In electrophoretic separation, 94 per cent of the goats showed only one haemoglobin band (HbAA) and six per cent showed two bands (HbAB). HbBB was not observed in any of the genetic groups. Inheritance pattern of Hb alleles revealed that they inherit as autosomal co-dominant alleles. The frequency of HbA allele was 0.98 in Malabari and Saanen x Malabari and 0.97 in Alpine x Malabari, the difference being non significant. It was observed that the goat populations were in Hardy-Weinberg equilibrium with respect to the haemoglobin locus. The genetic group had no effect on the concentration of whole blood potassium. The frequency distribution of potassium concentration in the pooled population showed a distinct bimodality, on the basis of which the goats were classified into two distinct types viz. LK ( < 22 meq/1) and HK ( > 22 meq/1). 76.39 per cent of the pooled population were the LK type, a situation not reported in Indian goats. The potassium phenotypes are controlled by two autosomal alleles, KL (determining LK) and KH (determining HK), the KL being dominant over KH. The gene frequencies of KL and KH were 0.53 and 0.47 in Malabari, 0.50 and 0.50 in Saanen x Malabari and 0.52 and 0.48 in Alpine x Malabari, the difference among the three genetic groups being non significant. The genetic groups had significant effect on the potassium concentration in LK type goats, but such effect was not noticed in HK type goats. The genetic groups had significant effect on the erythrocyte glutathione (GSH) concentration. The frequency distribution of GSH concentration in the pooled population revealed a bimodality. Goats with GSH concentration of > 60 mg/100 ml RBC were classified as GSH-high type and those with < 60 mg/100 ml RBC were classified as GSH-low type. The frequency percentage of GSH-high type in the pooled population was 85.26. Among the three genetic groups, Alpine x Malabari had the highest frequency of 88.48 per cent and Malabari had the lowest frequency of 76.56 per cent. Inheritance pattern of GSH phenotypes showed that in goats GSH types are controlled by two autosomal alleles GSHH (determining GSH-high type) and GSHh (determining GSH-low type), the GSHH being dominant over GSHh. The frequencies of GSHH and GSHh were 0.51 and 0.49 in Malabari, 0.62 and 0.38 in Saanen x Malabari and 0.66 and 0.34 in Alpine x Malabari, without any significant differences among the genetic groups. The frequencies of potassium and GSH alleles and also their concentration did not change over the two generation in any of the genetic groups except in Saanen x Malabari, wherein the mean GSH concentration GSH-high type goats of third generation was significantly higher than that of the second generation. Sex did not influence the concentration of potassium and GSH. A valid conclusion could not be drawn on the effect of sire on the potassium and GSH concentration in its offspring. Studies revealed that haemoglobin, potassium and GSH were not genetically associated. Haemoglobin type had no effect on packed cell volume and concentration of potassium and GSH. The LK type goats had significantly higher packed cell volume in all the genetic groups. The potassium type had no effect on the concentration of GSH in the crossbred goats but in Malabari the HK types had significantly higher concentration in GSH than that of LK types. Goats with HbAA phenotype had heavier body weight at different ages when compared to that of HbAB type. However, the differences was significantly only for the weight at one year in Malabari and weight at nine months in crossbreds. Haemoglobin type had no effect on the production traits. In general, the growth and production traits were not seen influenced by the potassium and GSH types.
  • ThesisItemOpen Access
    Genetic studies on the immune response of broiler rabbits
    (Department of animal breeding and genetics, College of veterinary and animal sciences, 1995) Nandakumar, P; KAU; Mukundan, G
    The scope and potential of broiler rabbit production as an alternate source of meat appears to be tremendous taking into account the unique biological attributes of rabbits. However breeding experiments utilising temperate breeds like Newzealand White and Soviet Chinchilla under the humid tropics of the state revealed heavy pre – weaning mortality, high incidence of diseases, sub optimal growth and reproduction. Indirect selection for diseases resistance has been proposed as the most viable approach and immune responsiveness has been suggested as one of the best indicators of disease resistance. Serum gammaglobulin (SG) level, Frossman antibody titer to SRBC, antibody reponse to BRBC, delayed type hypersensitivity (DTH) responses to intradermal injection of phytomitogen PHA – M, and contact sensitivity to DNCB challenge were assessed among 135 breeding rabbits below one year of age and belonging to Newzealand White and Soviet Chinchilla breeds. The effects of breed, sex, sire and body weight on the above immune traits were analysed. Heritability estimates were made for each of the above traits. Association of diseases like coccidiosis, mange and adult mortality with each of the above immune traits was worked out. Association of maternal immune trait status with litter traits was assessed. This research approach was aimed at developing an alternate breeding strategy in the indirect selection for disease resistance, growth and viability. SG level ranged from 9.13 to 84.70 mg/ml with a mean of 28.59 mg/ml. Soviet Chinchilla breed had a significantly (P= 0.048) higher SG level with a mean of 29.51 mg/ml compared to 27.25 mg/ml in Newzealand Whites, differences among males and females were not significant. Sire effects was not significant on SG levels and haritability estimate was 0.1259. Adult body weight had no significant effect on SG level among broiler rabbits. Association of SG level with litter size at birth was not significant. But SG level had a highly significant effect on the litter size at weaning. Correlation of SG level with pre – weaning mortality (- 0.430) was highly significant (P < 0.01) and negative litter weight at birth and at weaning were significantly correlated with SG level among broiler rabbits. No significant association could be observed between SG level and the incidence of mange and adult mortality. But a higher SG level among broiler rabbits was found to be significantly (P = 0.0440) associated with the incidence of naturally occurring coccidiosis. Presence of Frossman’s antibodies to SRBC was confirmed in adult rabbit sera. The Forssman antibody titer (1 + loge) ranged between 1.693 and 5.159 with a mean of 2.776. Breed and sex effects were not significant on Frossman antibody titer to SRBC. Effect of sire on this trait was not significant and the heritability estimate was 0.360. Frossman antibody titer had no significant effect on adult body weight, or litter traits among broiler rabbits. Correlations of Frossman antibody titer of the dam with the litter weight at birth, litter weight at weaning and pre – weaning mortality were not significant. No significant associations could be observed between Frossman antibody titer incidence of mange, coccidiosis and adult mortality. Pre – immunisation titer to BRBC among broiler rabbits was zero indicating the absecnce of Feossman antibodies to BRBC. Antibody titres to BRBC (1+ loge) were 4.594, 4.425 and 4.311 respectively at the first, second and third week post immunisation. The highest antibody response was at the first week, which began to decline gradually. The influence of breed and sex on the antibody response to BRBC were not significant during the first, second and third week post immunisation. Sire effect was highly significant on the antibody response to BRBC during the first, second and third week post immunisation in Newzealand White rabbits. The effect of sire on antibody responses to BRBC was not significant during the first and third week post immunisation in Soviet Chinchilla breed though it was significant during the second week post immunisation. The heritability estimates of antibody responses to BRBC were 0.9200, 0.9400 and 0.9067 respectively during the first, second, and third week post immunisation. The correlations of adult body weight with antibody responses to BRBC during the first, second and third week post immunisation were (-) 0.244, (-) 0.224 and (-) 0.216 respectively. The correlations were highly significant and negative. Antibody responses to BRBC during the first, second and third week post immunisation was not significantly associated with litter traits among broiler rabbits. The incidence of naturally occurring coccidiosis, mange and adult mortality was not significantly associated with antibody response to BRBC. The mean pre – injection skin thickness was 2.140 mm in Newzealand White and 2.224 among Soviet Chinchilla breed. The mean PHA responses at 24, 48 and 72 hours post injection were 2.259, 1.544 and 0.778 mm respectively. Breed effect was not significant on the pre – injection skin thickness or on the PHA responses at 24, 48 and 72 hours. The effect of sex was highly significant in the skin thickness with males having a thicker skin compared to females. The effect of sex on PHA responses at 24, 48 and 72 hours was highly significant with a female superiority for DTH responses to PHA – M. The effect of sires was not significant on pre – injection skin thickness. Sire effects were highly significant on the PHA responses at 24 and 72 hours and approaching near significance at 48 hours in Newzealand White rabbits. However, sire effect was not found to be significant on the PHA responses at 24, 48 and 72 hours post injection among Soviet Chinchillas. Heritability esimates for pre – injection skin thickness, PHA responses at 24, 48 and 72 hours were 0.7637, 0.8600 and 0.6370 respectively. Adult body weight was not significantly associated with the skin thickness and the PHA responses at 24, 48 and 72 hours. Litter size at birth was significantly less in thick skinned does, though weaning litter size was significantly higher in them. PHA responses at 24, 48 and 72 hours had no significant effect on litter size at birth and at weaning or any other litter traits. Pre – injection skin thickness and PHA responses at 24 and 72 hours were not significantly associated with the incidence of mange, coccidiosis and adult mortality. But reduced PHA response at 48 hours significantly pre – disposed the rabbits to body mange. Contact sensitivity to DNCB at 24, 48 and 72 hours post challenge averaged 3.585 mm, 1.796 mm and 1.085 mm respectively. Breed and sex had no significant effect on the contact sensitivity to DNCB at 24, 48 and 72 hours post challenge. Sire effect on contact sensitivity to DNCB at 24, 48 and 72 hours post challenge was not significant in Newzealand White rabbits. Among Soviet Chinchillas also effect of sire was not significant on contact sensitivity to DNCB at 24 and 72 hours, though highly significant at 48 hours. Heritability estimates for contact sensitivity to DNCB at 24, 48 and 72 hours post – challenge were, 0.3820, 0.5490 and 0.3039 respectively. Contact sensitivity to DNCB at 24, 48 and 72 hours post challenge was not significantly associated with adult body weight, litter size at birth and litter size at weaning. Contact sensitivity of the doe at 24 hours post challenge was positively correlated with pre – weaning mortality and litter weight at birth. Lowered contact sensitivity to DNCB at 24 hours had a highly significant effect on the incidence of naturally occurring body mange among rabbit. The incidence of mange was near significant level among broiler rabbits with a lowered contact sensitivity at 48 hours post challenge also. No significant association could be observed with contact sensitivity to DNCB at 24, 48 and 72 hours on the incidence of coccidiosis and adult mortality. Correlations between serum gamma globulin level and Frossman antibody titer to SRBC (0.271) was highly significant correlations of Frossman antibody titer with antibody response to BRBC during the first, second and third week post immunisation was also highly significant. Pre – injection skin thickness had a highly significant negative correlation with PHA responses at 24, 48 and 72 hours. Correlations among PHA responses at 24, 48 and 72 hours were highly significant. Similarly correlation among contact sensitivity reactions at 24, 48 and 72 hours post challenge were highly significant. PHA responses at 24, 48 and 72 hours had significantly high correlations with contact sensitivity to DNCB at 24, 48 and 72 hours post challenge. Prospects of utilising maternal serum gammaglobulin level as a marker in indirect selection for enhanced pre – weaning survivability and growth appears to be promising. Though increased SGlevel was found to be associated with the incidence of coccidiosis, further researches on the coccidial species and host defenses are before establishing a coccidiosis resistance phenotype associated with this trait. The differences in sire effects among the two breeds for antibody response to BRBC and PHA responses are suggestive of the genetic structure of the two breeds, especially the Soviet Chinchilla colony developed from few animals. The significant negative correlation of adult body weight with antibody responses are indicative of lower antibody responses in heavier rabbits. Strong negative correlations between PHA responses and pre – injection skin thickness and a significant effect of contact sensitivity at 24 hours on reducing the litter size at weaning appear to suggest that a low maternal cell mediated immunity might enhance pre – weaning survivability of the kits. Significantly higher incidence of mange among rabbits with a lowered PHA response at 48 hours post injection and contact sensitivity at 24 hours post challenge suggest of an enhanced cell mediated immune response conferring mange resistance.