Loading...
Thumbnail Image

Kerala Agricultural University, Thrissur

The history of agricultural education in Kerala can be traced back to the year 1896 when a scheme was evolved in the erstwhile Travancore State to train a few young men in scientific agriculture at the Demonstration Farm, Karamana, Thiruvananthapuram, presently, the Cropping Systems Research Centre under Kerala Agricultural University. Agriculture was introduced as an optional subject in the middle school classes in the State in 1922 when an Agricultural Middle School was started at Aluva, Ernakulam District. The popularity and usefulness of this school led to the starting of similar institutions at Kottarakkara and Konni in 1928 and 1931 respectively. Agriculture was later introduced as an optional subject for Intermediate Course in 1953. In 1955, the erstwhile Government of Travancore-Cochin started the Agricultural College and Research Institute at Vellayani, Thiruvananthapuram and the College of Veterinary and Animal Sciences at Mannuthy, Thrissur for imparting higher education in agricultural and veterinary sciences, respectively. These institutions were brought under the direct administrative control of the Department of Agriculture and the Department of Animal Husbandry, respectively. With the formation of Kerala State in 1956, these two colleges were affiliated to the University of Kerala. The post-graduate programmes leading to M.Sc. (Ag), M.V.Sc. and Ph.D. degrees were started in 1961, 1962 and 1965 respectively. On the recommendation of the Second National Education Commission (1964-66) headed by Dr. D.S. Kothari, the then Chairman of the University Grants Commission, one Agricultural University in each State was established. The State Agricultural Universities (SAUs) were established in India as an integral part of the National Agricultural Research System to give the much needed impetus to Agriculture Education and Research in the Country. As a result the Kerala Agricultural University (KAU) was established on 24th February 1971 by virtue of the Act 33 of 1971 and started functioning on 1st February 1972. The Kerala Agricultural University is the 15th in the series of the SAUs. In accordance with the provisions of KAU Act of 1971, the Agricultural College and Research Institute at Vellayani, and the College of Veterinary and Animal Sciences, Mannuthy, were brought under the Kerala Agricultural University. In addition, twenty one agricultural and animal husbandry research stations were also transferred to the KAU for taking up research and extension programmes on various crops, animals, birds, etc. During 2011, Kerala Agricultural University was trifurcated into Kerala Veterinary and Animal Sciences University (KVASU), Kerala University of Fisheries and Ocean Studies (KUFOS) and Kerala Agricultural University (KAU). Now the University has seven colleges (four Agriculture, one Agricultural Engineering, one Forestry, one Co-operation Banking & Management), six RARSs, seven KVKs, 15 Research Stations and 16 Research and Extension Units under the faculties of Agriculture, Agricultural Engineering and Forestry. In addition, one Academy on Climate Change Adaptation and one Institute of Agricultural Technology offering M.Sc. (Integrated) Climate Change Adaptation and Diploma in Agricultural Sciences respectively are also functioning in Kerala Agricultural University.

Browse

Search Results

Now showing 1 - 1 of 1
  • ThesisItemOpen Access
    Development of F1 hybrids of indeterminate tomato (Solanum lycopersicum L.) for protected cultivation
    (Department of Olericulture, College of Agriculture, Vellayani, 2015) Lekshmi, S L; KAU; Celine, V A
    The present investigation entitled “Development of F1 hybrids of indeterminate tomato (Solanum lycopersicum L.) for protected cultivation” was conducted at the Department of Olericulture, College of Agriculture, Vellayani, from 2013 to 2015 with the objectives of identifying superior varieties and developing F1 hybrids of indeterminate tomato suited for protected cultivation. The study consisted of two experiments conducted in the naturally ventilated polyhouse of size 50 m x 20 m located at the Instructional Farm, Vellayani. In the first part of the first experiment, 40 tomato genotypes were evaluated for two consecutive years in an RBD with three replications. As the second part, 12 commercial hybrids were evaluated. The second experiment consisted of a 9 x 9 half diallel analysis laid out in an RBD with three replications. Analysis of variance showed significant differences between the genotypes for all the characters for two crops. Pooled analysis revealed that, LE 1 recorded the highest yield (2443.43 g) and fruit weight (108.13 g) followed by LE 7. LE 53 had maximum number of fruits per plant (65.00). In the present study, genotypes had wide variation for quality parameters. Fruits of LE 14 recorded highest TSS with a mean of 5.74 ºBrix. LE 7 had maximum ascorbic acid (30.13 mg/100g) and lycopene content (13.09 mg/100g). Beta carotene value was maximum in LE 16 (184.15 mg/100g). There was minimum incidence of pests, diseases and physiological disorders under protected conditions. Among the 12 hybrids evaluated, INDAM 9802 was the highest yielder (1444.40 g) followed by F1 T 30 (1412.22 g). F1 T 30 recorded maximum fruits per plant (35.66) which was on par with F1 Queen (35.55). Genetic parameters like phenotypic and genotypic coefficients of variation, heritability and genetic advance were studied to assess the genetic variability among the genotypes. High heritability coupled with high genetic advance were observed for characters like truss per plant, fruits per truss, fruit weight, fruits per plant, yield per plant and yield per plot. Path analysis revealed highest positive direct effect for fruit weight (0.3956), truss per plant (0.3558) and fruits per plant (0.3381). Based on D2 analysis the 40 genotypes were grouped into eight clusters. Cluster I was the largest with twenty four genotypes followed by cluster II with ten genotypes. Diallel analysis was carried out using nine parents selected based on genetic divergence and per se performance. The parents were crossed in a diallel fashion excluding reciprocals to obtain 36 F1 hybrids. The study revealed that P5 x P9 had the highest yield (3114.03 g) which was on par with P6 x P8 (3074.37 g) and P1 x P5 (3077.58 g). P1 x P5 had the maximum fruits per plant (103.93). The magnitude of relative heterosis, heterobeltiosis and standard heterosis varied considerably. For yield, relative heterosis ranged from -32.40 to 92.72, heterobeltiosis from -47.14 to 89.54 and standard heterosis from 2.91 to 160.95. The σ2gca and σ2sca ratio indicated that non-additive gene action was predominant for all traits. Among the nine parents, P9 (LE 1), P5 (LE 20) P1 (LE 2), and P2 (LE 7) were superior for yield and yield attributes. The estimates of sca effects indicated that P5 x P9 (LE 20 x LE 1), P6 x P8 (LE 39 x LE 38) and P1 x P5 (LE 2 x LE 20) were the most promising hybrids for protected cultivation. The present study revealed that the genotypes LE 1 and LE 7 and the hybrids INDAM 9802 and F1 T 30 were superior for yield and yield attributes under protection. Based on the mean performance, standard heterosis and sca effects the three potential crosses viz., P5 x P9, P6 x P8 and P1 x P5 could be adjudged as suitable indeterminate tomato hybrids for protected cultivation.