Loading...
Thumbnail Image

Kerala Agricultural University, Thrissur

The history of agricultural education in Kerala can be traced back to the year 1896 when a scheme was evolved in the erstwhile Travancore State to train a few young men in scientific agriculture at the Demonstration Farm, Karamana, Thiruvananthapuram, presently, the Cropping Systems Research Centre under Kerala Agricultural University. Agriculture was introduced as an optional subject in the middle school classes in the State in 1922 when an Agricultural Middle School was started at Aluva, Ernakulam District. The popularity and usefulness of this school led to the starting of similar institutions at Kottarakkara and Konni in 1928 and 1931 respectively. Agriculture was later introduced as an optional subject for Intermediate Course in 1953. In 1955, the erstwhile Government of Travancore-Cochin started the Agricultural College and Research Institute at Vellayani, Thiruvananthapuram and the College of Veterinary and Animal Sciences at Mannuthy, Thrissur for imparting higher education in agricultural and veterinary sciences, respectively. These institutions were brought under the direct administrative control of the Department of Agriculture and the Department of Animal Husbandry, respectively. With the formation of Kerala State in 1956, these two colleges were affiliated to the University of Kerala. The post-graduate programmes leading to M.Sc. (Ag), M.V.Sc. and Ph.D. degrees were started in 1961, 1962 and 1965 respectively. On the recommendation of the Second National Education Commission (1964-66) headed by Dr. D.S. Kothari, the then Chairman of the University Grants Commission, one Agricultural University in each State was established. The State Agricultural Universities (SAUs) were established in India as an integral part of the National Agricultural Research System to give the much needed impetus to Agriculture Education and Research in the Country. As a result the Kerala Agricultural University (KAU) was established on 24th February 1971 by virtue of the Act 33 of 1971 and started functioning on 1st February 1972. The Kerala Agricultural University is the 15th in the series of the SAUs. In accordance with the provisions of KAU Act of 1971, the Agricultural College and Research Institute at Vellayani, and the College of Veterinary and Animal Sciences, Mannuthy, were brought under the Kerala Agricultural University. In addition, twenty one agricultural and animal husbandry research stations were also transferred to the KAU for taking up research and extension programmes on various crops, animals, birds, etc. During 2011, Kerala Agricultural University was trifurcated into Kerala Veterinary and Animal Sciences University (KVASU), Kerala University of Fisheries and Ocean Studies (KUFOS) and Kerala Agricultural University (KAU). Now the University has seven colleges (four Agriculture, one Agricultural Engineering, one Forestry, one Co-operation Banking & Management), six RARSs, seven KVKs, 15 Research Stations and 16 Research and Extension Units under the faculties of Agriculture, Agricultural Engineering and Forestry. In addition, one Academy on Climate Change Adaptation and one Institute of Agricultural Technology offering M.Sc. (Integrated) Climate Change Adaptation and Diploma in Agricultural Sciences respectively are also functioning in Kerala Agricultural University.

Browse

Search Results

Now showing 1 - 1 of 1
  • ThesisItemOpen Access
    Statistical modelling for the impact of weather and soil parameters on the yield of paddy under long term fertilizer experiment
    (Department of Agricultural Statistics, College of Agriculture, Vellayani, 2019) Dhanya, G; KAU; Brigit Joseph
    The study entitled “Statistical modeling for the impact of weather and soil parameters on the yield of paddy under Long Term Fertilizer Experiment” was undertaken with the objective to develop suitable statistical models to analyse the change in weather variables over time. It also focused on changes in soil parameters across treatments in Long Term Fertilizer Experiment (LTFE) over the years and the impact of weather and soil parameters on the yield of paddy. The analysis was carried out based on secondary monthly data of weather parameters viz maximum temperature, minimum temperature and total rainfall, collected for a period 1985-2014 from the Department of Agricultural Meteorology, College of Agriculture, Vellayani. Data on soil organic carbon, phosphorus, potassium, grain yield and straw yield in kharif and rabi season were collected from the ‘Permanent plot experiment on integrated nutrient system for a cereal based crop sequence’ conducted at Integrated Farming System Research Station (IFSRS), Karamana on rice (variety Aiswarya) for a period 1985-2013. The experiment was conducted in Randomised Block Design with 12 treatments (named as T1, T2,…, T12) and 4 replications. Mean, Standard deviation and coefficient of variation of maximum temperature, minimum temperature and total rainfall was worked out for different years. Maximum temperature (2.69-5.36) and minimum temperature (2.78-7.26) have shown less coefficient of variation however, coefficient of variation was very high for total rainfall (74.11-127.17). Autoregressive Integrated Moving Average (ARIMA) models were used to model maximum and minimum temperature based on their own past lagged values. ARIMA (101) (111) was found to be the best model for maximum temperature as it has satisfied least AIC (Akaike Information Criteria) and BIC (Bayesian Information Criteria). ARIMA (011) (011) was found to be the best model for minimum temperature. Seasonal effect was removed to avoid cyclical fluctuations in rainfall and variation in monthly rainfall over time was estimated using Generalized Auto Regressive Conditional Heteroscedasticity (GARCH) model. GARCH (2, 1) and E-GARCH (1, 1) with 1 lag were found to be the best model to explain the variability over the period (1985-2013). High fluctuation in total rainfall was noticed during the years 1999 and 2000 based on conditional standard deviation graph. Multivariate Analysis of Variance (MANOVA) was performed on soil parameters to test the significant difference between treatments over the years in kharif and rabi. There was significant difference between soil organic carbon, phosphorus and potassium between 12 treatments during 6 years (1990, 1995, 2000, 2005, 2010, and 2013) in both seasons. Further ANOVA was done to test the significant difference between treatments based on each soil parameters. Results of Analysis of Variance (ANOVA) revealed that T8 had high soil organic carbon and potassium whereas T3, T8 and T9 showed high soil phosphorus in kharif. T8, T3 and T9 showed highest soil organic carbon, phosphorus and potassium respectively in rabi. Split-split plot analysis was conducted with main plot as year, sub plot as seasons and sub-sub plot as treatments to test the interaction effect of treatments with season and year. Only the year×treatment interaction was found significant in case of organic carbon whereas year×treatment, season×treatment interactions were found significant for phosphorus and potassium. This result indicated that there was significant difference in potassium and phosphorous over the seasons with respect to treatments. On comparing the yield of different treatments T6 was found with highest grain yield and T1 was the least in both seasons. The graph for trend in grain yield and straw yield suggest same pattern for all the treatments over the entire period. Split-split plot analysis was carried out to find out the interaction effect of treatment×season, treatment×year and treatment×season×year on grain yield and straw yield. There was significant interaction between years and seasons for straw yield. To find out the impact of weather parameters and soil parameters on grain yield, regression was performed by taking soil and weather parameters as independent variables. The results of regression analysis suggest that there was significant and negative influence of maximum temperature and soil potassium on grain yield whereas the effect of total rainfall on grain yield was positive and significant in kharif season. However, minimum temperature and total rainfall were influencing positively and significantly the grain yield in rabi season. ARIMA models were found to be the best model for predicting maximum and minimum temperature and GARCH models were found to be good in estimating volatility of total rainfall. T6 (50 percent Recommended dose of fertilizers (RDF) - (90: 45: 45 kg NPK/ha) of NPK+ 50 percent FYM in kharif and 50 percent RDF of NPK in rabi) showed good result for grain yield by comparing treatment wise performance throughout the experiment during kahrif and rabi. The treatment absolute control (T1) has recorded with lowest yield. The effect of weather and soil parameters on the yield of rice studied using regression analysis across treatments revealed that total rain fall had positive and significant effect on grain yield of twelve treatments except T2. In case of treatments T6 and T7, minimum temperature also had positive effect on grain yield but in case of T1 soil phosphorus and maximum temperature also showed positive significant result.