Loading...
Thumbnail Image

Kerala Agricultural University, Thrissur

The history of agricultural education in Kerala can be traced back to the year 1896 when a scheme was evolved in the erstwhile Travancore State to train a few young men in scientific agriculture at the Demonstration Farm, Karamana, Thiruvananthapuram, presently, the Cropping Systems Research Centre under Kerala Agricultural University. Agriculture was introduced as an optional subject in the middle school classes in the State in 1922 when an Agricultural Middle School was started at Aluva, Ernakulam District. The popularity and usefulness of this school led to the starting of similar institutions at Kottarakkara and Konni in 1928 and 1931 respectively. Agriculture was later introduced as an optional subject for Intermediate Course in 1953. In 1955, the erstwhile Government of Travancore-Cochin started the Agricultural College and Research Institute at Vellayani, Thiruvananthapuram and the College of Veterinary and Animal Sciences at Mannuthy, Thrissur for imparting higher education in agricultural and veterinary sciences, respectively. These institutions were brought under the direct administrative control of the Department of Agriculture and the Department of Animal Husbandry, respectively. With the formation of Kerala State in 1956, these two colleges were affiliated to the University of Kerala. The post-graduate programmes leading to M.Sc. (Ag), M.V.Sc. and Ph.D. degrees were started in 1961, 1962 and 1965 respectively. On the recommendation of the Second National Education Commission (1964-66) headed by Dr. D.S. Kothari, the then Chairman of the University Grants Commission, one Agricultural University in each State was established. The State Agricultural Universities (SAUs) were established in India as an integral part of the National Agricultural Research System to give the much needed impetus to Agriculture Education and Research in the Country. As a result the Kerala Agricultural University (KAU) was established on 24th February 1971 by virtue of the Act 33 of 1971 and started functioning on 1st February 1972. The Kerala Agricultural University is the 15th in the series of the SAUs. In accordance with the provisions of KAU Act of 1971, the Agricultural College and Research Institute at Vellayani, and the College of Veterinary and Animal Sciences, Mannuthy, were brought under the Kerala Agricultural University. In addition, twenty one agricultural and animal husbandry research stations were also transferred to the KAU for taking up research and extension programmes on various crops, animals, birds, etc. During 2011, Kerala Agricultural University was trifurcated into Kerala Veterinary and Animal Sciences University (KVASU), Kerala University of Fisheries and Ocean Studies (KUFOS) and Kerala Agricultural University (KAU). Now the University has seven colleges (four Agriculture, one Agricultural Engineering, one Forestry, one Co-operation Banking & Management), six RARSs, seven KVKs, 15 Research Stations and 16 Research and Extension Units under the faculties of Agriculture, Agricultural Engineering and Forestry. In addition, one Academy on Climate Change Adaptation and one Institute of Agricultural Technology offering M.Sc. (Integrated) Climate Change Adaptation and Diploma in Agricultural Sciences respectively are also functioning in Kerala Agricultural University.

Browse

Search Results

Now showing 1 - 1 of 1
  • ThesisItemOpen Access
    Comparison of methods for optimum plot size and shape for field experiments on paddy (Oryza sativa)
    (Department of Agricultural Statistics, College of Agriculture, Vellayani, 2019) Athulya, C K; KAU; Brigit Joseph
    The research work entitled “Comparison of methods for optimum plot size and shape for field experiments on paddy (Oryza sativa)” was conducted with the objective of estimation and comparison of methods for optimum plot size and shape for field experiments on high yielding variety of paddy. The study was based on primary data collected from a uniformity trial conducted in an area of 800m2 with Uma variety of paddy in virippu season 2018 at Integrated Farming System Research Station (IFSRS), Karamana. The crop was transplanted at a spacing of 20 cm × 15 cm. The field was divided in to 1.2 m × 1.2 m (1.44 m2) plots, after leaving a border of one meter from all the sides of the plot to eliminate the border effects, thus give rise to 400 basic units. Observations on plant height and number of tillers were recorded separately from each basic unit at monthly intervals and number of productive tillers, thousand grain weight, grain yield and straw yield were recorded separately from each basic unit at the time of harvest. The average height of the plant increased from 40.55 cm at one month after planting (MAP) to 121.37 cm at four MAP. The number of tillers per plant varied from 4 at two MAP to 14 at four MAP. The grain yield per basic unit varied from a minimum of 200 g to a maximum of 650 g with an average yield of 391.13 g per plot. The average straw yield was 0.501 kg. The first quartile (Q1) was observed at 0.410 kg and third quartile (Q3) was at 0.572 kg. The estimated average harvest index was 0.438 with a coefficient of variation (CV) of 20.78 per cent. The mean productive tillers estimated was 9 per plant. The correlation between productive tillers and grain yield was significant (0.128). Harvest index showed a very high significant correlation of 0.744 with grain yield. Soil fertility contour map was constructed based on yield data of all original basic units and by taking 3 × 3 and 5 × 5 moving average and the results of the analysis have shown that 3 × 3 moving average provided a more prominent picture of fertility status of the field and thus concluded that fertility gradient was more in horizontal direction. Serial correlation of horizontal and vertical strip and mean squares between vertical and horizontal strips also revealed that fertility gradient was more pronounced in horizontal direction. The optimum plot size estimated by combining the basic units of 1.44 m2 into plots of different sizes along with CV for each plot size. The different methods used for the estimation of optimum plot size are maximum curvature method, Fairfield Smith’s variance law method, modified maximum curvature method, comparable variance method, cost ratio method, covariate method, based on shape of the plot method and Hatheway’s method. Generally these methods need not provide a unique estimate. The optimum plot size estimated under maximum curvature method and comparable variance method was 34.56 m2 (24 basic units) with rectangular shape and it was same for both methods. The optimum plot size estimated under covariate method by taking harvest index as covariate was also 34.56 m2. The optimum plot size estimated by considering length (X1) and breadth (X2) also provided same plot size (34.56 m2) with X1 =3 units and X2 =8. Optimum plot size under Hatheway’s method was estimated by choosing varying number of replications and difference between treatment means. A plot size of 37.44 m2 (26 basic units) for four replications and 10 per cent difference between the treatment means was found to be optimum under this method. The optimum plot size estimated under Fairfield Smith’s variance law method and modified maximum curvature method was 8.64 m2 and it was not considered as optimum because it was smaller in size. Optimum plot size under cost ratio method was obtained by considering different cost ratios of fixed cost K1 and variable cost K2. The estimated plot size under cost ratio method was 5.95 units with K1 = 10 and K2 = 1. The comparison of methods for optimum plot size was done based on CV. The maximum percentage reduction in CV was found to be with a plot size of 24 basic units and percentage reduction was very low thereafter. Hence maximum curvature method, comparable variance method, covariate method and shape of the plot methods can be recommended for estimating optimum plot size for Uma variety of paddy for field experiments and the estimated optimum plot size was 34.56 m2 and the recommended shape was rectangular