Loading...
Thumbnail Image

Kerala Agricultural University, Thrissur

The history of agricultural education in Kerala can be traced back to the year 1896 when a scheme was evolved in the erstwhile Travancore State to train a few young men in scientific agriculture at the Demonstration Farm, Karamana, Thiruvananthapuram, presently, the Cropping Systems Research Centre under Kerala Agricultural University. Agriculture was introduced as an optional subject in the middle school classes in the State in 1922 when an Agricultural Middle School was started at Aluva, Ernakulam District. The popularity and usefulness of this school led to the starting of similar institutions at Kottarakkara and Konni in 1928 and 1931 respectively. Agriculture was later introduced as an optional subject for Intermediate Course in 1953. In 1955, the erstwhile Government of Travancore-Cochin started the Agricultural College and Research Institute at Vellayani, Thiruvananthapuram and the College of Veterinary and Animal Sciences at Mannuthy, Thrissur for imparting higher education in agricultural and veterinary sciences, respectively. These institutions were brought under the direct administrative control of the Department of Agriculture and the Department of Animal Husbandry, respectively. With the formation of Kerala State in 1956, these two colleges were affiliated to the University of Kerala. The post-graduate programmes leading to M.Sc. (Ag), M.V.Sc. and Ph.D. degrees were started in 1961, 1962 and 1965 respectively. On the recommendation of the Second National Education Commission (1964-66) headed by Dr. D.S. Kothari, the then Chairman of the University Grants Commission, one Agricultural University in each State was established. The State Agricultural Universities (SAUs) were established in India as an integral part of the National Agricultural Research System to give the much needed impetus to Agriculture Education and Research in the Country. As a result the Kerala Agricultural University (KAU) was established on 24th February 1971 by virtue of the Act 33 of 1971 and started functioning on 1st February 1972. The Kerala Agricultural University is the 15th in the series of the SAUs. In accordance with the provisions of KAU Act of 1971, the Agricultural College and Research Institute at Vellayani, and the College of Veterinary and Animal Sciences, Mannuthy, were brought under the Kerala Agricultural University. In addition, twenty one agricultural and animal husbandry research stations were also transferred to the KAU for taking up research and extension programmes on various crops, animals, birds, etc. During 2011, Kerala Agricultural University was trifurcated into Kerala Veterinary and Animal Sciences University (KVASU), Kerala University of Fisheries and Ocean Studies (KUFOS) and Kerala Agricultural University (KAU). Now the University has seven colleges (four Agriculture, one Agricultural Engineering, one Forestry, one Co-operation Banking & Management), six RARSs, seven KVKs, 15 Research Stations and 16 Research and Extension Units under the faculties of Agriculture, Agricultural Engineering and Forestry. In addition, one Academy on Climate Change Adaptation and one Institute of Agricultural Technology offering M.Sc. (Integrated) Climate Change Adaptation and Diploma in Agricultural Sciences respectively are also functioning in Kerala Agricultural University.

Browse

Search Results

Now showing 1 - 3 of 3
  • ThesisItemOpen Access
    Mealybugs of vegetable ecosystems and tritrophic interactions of brinjal mealybugs
    (Department of Agricultural Entomology, College of Agriculture ,Vellayani, 2022) Anitha, N; KAU; Mithra, Mohan
    The study on “Mealybugs of vegetable ecosystems and tritrophic interactions of brinjal mealybugs” was conducted at College of Agriculture, Vellayani during 2017 to 2020 with the objectives to identify mealybugs and their natural enemy fauna in solanaceous and cucurbitaceous vegetables, to carry out the molecular characterization of mealy bugs in solanaceous and cucurbitaceous vegetables and to find out the tritrophic interactions of mealybugs infesting brinjal. An investigation on mealybug diversity in solanaceous and cucurbitaceous crops of Kerala revealed a total of six mealybug species viz., Coccidohystrix insolita, Ferrisia virgata, Paracoccus marginatus, Phenacoccus solenopsis, Planococcus citri and Pseudococcus jackbeardsleyi. Besides, four mealybugs viz., Crisicoccus hirsutus, Maconellicoccus hirsutus, Planococcus lilacinus and Rastrococcus iceryoides infesting other vegetable crops were also recorded from Kerala. The study also revealed that the population of mealybug, C. insolita collected from different regions of Kerala exhibited significant morphological variation. The molecular characterization studies proved that the population belongs to C. insolita and the variations may be environmental induced. An exploration of the host range of mealybugs infesting solanaceous and cucurbitaceous vegetables in Kerala revealed a total of 113 plants under 73 genera belonging to 31 families, out of which 14 plants were recorded as new host reports. A rich natural enemy fauna on mealybugs belongs to five orders viz., Coleoptera, Lepidoptera, Diptera, Neuroptera and Hymenoptera were documented from Kerala. Twenty species of mealybug predators from five different families were recorded, among which the predominant family was Coccinellidae with 16 species under six genera. Among the various predators collected, Cacoxenus sp. was recorded for the first time as a predator of P. jackbeardsleyi. Eleven hymenopteran parasitoids belonging to five families were documented from mealybugs, of which the majority belongs to the family Encyrtidae. Four new host-parasitoid associations were also recorded for the first 288 time. The study also identified six hyperparasitoids under the family Encyrtidae, of which two species were recorded as new report which includes Cheiloneurus sp. and Prochilonerus sp. associated with the mealybug P. solenopsis. The ants associated with mealybugs in different agroecosystems were also investigated and a total of 14 species of ants belonging to nine genera under three subfamilies were recorded, of which the most dominant subfamily was Formicinae followed by Myrmicinae and Dolichoderinae. The present study also revealed 15 new ant-mealybug associations for the first time. The molecular characterization of eight mealybug species was carried out that complemented the morphological identification of species. A total of eight nucleotide sequences were submitted to NCBI GenBank and accession numbers were generated. The sequences were also submitted to BOLD and illustrative barcodes were generated. The barcodes of C. insolita, C. hirsutus and P. jackbeardsleyi were generated for the first time. The diversity of endosymbionts of the mealybug C. insolita was carried out for the first time. The study revealed a total of 15 phyla of endosymbionts on C. insolita, of which Proteobacteria was the predominant one. An experiment was conducted at Instructional Farm, Vellayani to identify the tritrophic interaction in brinjal, C. insolita and its natural enemies. The study revealed that out of the ten brinjal cultivars evaluated, the lowest mean population of mealybugs was observed in Pusa Uttam whereas the hybrid cultivar, Udit recorded the highest number of mealybugs. The lowest mean per cent leaf infestation was recorded in Pusa Purple Long which was statistically on par with Pusa Uttam whereas the hybrid cultivar, Udit was severely damaged by the mealybugs. Among the tested cultivars, Pusa Purple Long was recorded under the group resistant whereas Udit and Haritha were included under the highly susceptible group based on the mean per cent leaf infestation caused by C. insolita. The cultivar Haritha attracted the highest number of predators whereas the maximum mean population of spiders were observed in Pusa Purple Long. 289 The correlation analysis on the mean population of mealy bugs with biophysical parameters revealed that trichome density, length width ratio of leaf and number of branches exhibited a significant positive correlation with mean population of mealybugs. Correlation studies on the mean population of natural enemies with biophysical parameters revealed that plant height exhibited a significant negative correlation whereas leaf thickness and number of branches revealed a non-significant negative correlation with the mean population of natural enemies. Among the biochemical parameters of brinjal cultivars, total phenol content exhibited a significant negative correlation with the mean population of mealybugs whereas total chlorophyll content showed a significant positive correlation. The correlation between biochemical parameters of brinjal cultivars with the mean population of natural enemies revealed that total phenol and carotenoid content exhibited a non-significant negative correlation whereas total protein content, reducing sugar and total chlorophyll content showed a nonsignificant positive correlation. The info-chemical mediated interactions in brinjal cultivars, mealybug and its natural enemies were studied using a multi-armed olfactometer and Y-shaped olfactometer assay. The results revealed that the cultivar Udit attracted the highest number of natural enemy Chrysoperla zastrowii sillemi while the cultivar Pusa Uttam attracted the lowest number. The variation in preference shown by the natural enemies may be related to the difference in volatile compounds emanating from the host cultivar. The GC-MS analysis of the synomonal compounds of the cultivar, Udit revealed a total of eleven compounds whereas the cultivar Pusa Uttam was recorded with a total of five compounds. The Y shaped olfactometer studies revealed that C. zastrowi sillemi adults showed more preference towards the synomonal compounds of mealybug infested plants than that of healthy plant synomonal extracts. On comparing the volatile profile of synomones of mealybug infested and healthy plants revealed that the synomonal extracts of the mealybug infested cultivar Udit comprised of 11 compounds whereas healthy plant synomonal extracts contained nine compounds. 290 The relative response of C. zastrowi sillemi towards the kairomonal compounds of C. insolita was evaluated in a Y tube olfactometer and the results revealed that the highest mean number of adult lacewings were attracted to the kairomonal compounds of mealybug compared to control. The kairomonal extracts of the mealybug comprised of seven compounds and the composition of these hydrocarbons may determine the selectivity of natural enemies towards the preferred host. The present study recorded a total of six mealybug species infesting solanaceous and cucurbitaceous vegetables and its host range, natural enemies and associated ants in different agro ecological regions of Kerala. The molecular characterization studies supported the morphological taxonomy and the sequences were submitted to NCBI Genbank and BOLD. The study also elucidated the interactions mediated by plant traits and info-chemicals in brinjal-mealybugnatural enemy tritrophic systems. The study recorded Pusa Purple Long as resistant cultivar and Udit and Haritha as highly susceptible cultivar to C. insolita. The plant traits viz., trichome density, length width ratio of leaf, number of branches, total phenol content and total chlorophyll content exhibited significant correlation with mean population of mealybugs whereas plant height exhibited significant correlation with mean population of natural enemies. The study on info-chemical mediated tritrophic interactions revealed that the concentration and composition of volatile compounds determine the differential selectivity of natural enemies. The volatile compounds identified in this study can also be used as a cue in moderating the behavior of natural enemies in the ecosystems. So a thorough knowledge on the tritrophic relations in the ecosystem will aid in manipulating these interactions to devise a better pest management strategy.
  • ThesisItemOpen Access
    Effect of root-knot nematode meloidogyne incognita (Kofoid and White) chitwood and reniform nematode rotylenchulus reniformis linford and oliveria on cowpea
    (Department of Agricultural Entomology, College of Agriculture, Vellayani, 1989) Anitha, N; KAU; Anitha N Researcher
    Three pot culture experiments were laid out with the objectives (i) to study the effect of M. incognita on cowpea, (ii) to study the effect of R. reniformis on cowpea and (iii) to study their combind effect. The individual effects were assessed with nine population levels ranging from 0 – 1000 larvae/100 ml soil each replicated thrice. In the combined experiment three population levels, 100, 200 and 400 and their three combinations were tried each replicated four times. The results indicated that at initial inoculam levels of 100, 200, 400 and 600 larvae/ 100 ml of soil of the two nematodes, M. incognita and R. reniformis extered severe damaging influence on cowpea. The higher inoculum levels of 800 and 1000 larvae/100 ml soil did not show a progressive increase in crop loss. It is evident that the threshold levels of the nematodes will fall within the range of 100 to 600 larvae/100 ml soil. In the combined inoculation of the nematodes, an inoculum level of 400 M. incognita followed by 400 R. reniformis/100 ml soil 15 days later exerted a highly deleterious effect on cowpea. Simultaneous inoculation did not lag for behind in its debilitating effect. Considering the nematode population in soil, multiplication rate of both nematodes were found higher in lower inoculum levels than in the higher inoculum levels. In the combined inoculation, reniform nematode dominated root - knot nematode. Reniform nematode had an adverse effect on the multiplication of root-knot nematode. Both nematodes thrived well when M. incognita was inoculated prior to R. reniformis.
  • ThesisItemOpen Access
    Bioecology and integrated management of banana pseudostem weevil Odoiporus longlcollis Oliv.
    (Kerala Agricultural University;Thiruvananthapuram, 2000) Anitha, N; KAU; Nair, G. Madhavan