Loading...
Thumbnail Image

Kerala Agricultural University, Thrissur

The history of agricultural education in Kerala can be traced back to the year 1896 when a scheme was evolved in the erstwhile Travancore State to train a few young men in scientific agriculture at the Demonstration Farm, Karamana, Thiruvananthapuram, presently, the Cropping Systems Research Centre under Kerala Agricultural University. Agriculture was introduced as an optional subject in the middle school classes in the State in 1922 when an Agricultural Middle School was started at Aluva, Ernakulam District. The popularity and usefulness of this school led to the starting of similar institutions at Kottarakkara and Konni in 1928 and 1931 respectively. Agriculture was later introduced as an optional subject for Intermediate Course in 1953. In 1955, the erstwhile Government of Travancore-Cochin started the Agricultural College and Research Institute at Vellayani, Thiruvananthapuram and the College of Veterinary and Animal Sciences at Mannuthy, Thrissur for imparting higher education in agricultural and veterinary sciences, respectively. These institutions were brought under the direct administrative control of the Department of Agriculture and the Department of Animal Husbandry, respectively. With the formation of Kerala State in 1956, these two colleges were affiliated to the University of Kerala. The post-graduate programmes leading to M.Sc. (Ag), M.V.Sc. and Ph.D. degrees were started in 1961, 1962 and 1965 respectively. On the recommendation of the Second National Education Commission (1964-66) headed by Dr. D.S. Kothari, the then Chairman of the University Grants Commission, one Agricultural University in each State was established. The State Agricultural Universities (SAUs) were established in India as an integral part of the National Agricultural Research System to give the much needed impetus to Agriculture Education and Research in the Country. As a result the Kerala Agricultural University (KAU) was established on 24th February 1971 by virtue of the Act 33 of 1971 and started functioning on 1st February 1972. The Kerala Agricultural University is the 15th in the series of the SAUs. In accordance with the provisions of KAU Act of 1971, the Agricultural College and Research Institute at Vellayani, and the College of Veterinary and Animal Sciences, Mannuthy, were brought under the Kerala Agricultural University. In addition, twenty one agricultural and animal husbandry research stations were also transferred to the KAU for taking up research and extension programmes on various crops, animals, birds, etc. During 2011, Kerala Agricultural University was trifurcated into Kerala Veterinary and Animal Sciences University (KVASU), Kerala University of Fisheries and Ocean Studies (KUFOS) and Kerala Agricultural University (KAU). Now the University has seven colleges (four Agriculture, one Agricultural Engineering, one Forestry, one Co-operation Banking & Management), six RARSs, seven KVKs, 15 Research Stations and 16 Research and Extension Units under the faculties of Agriculture, Agricultural Engineering and Forestry. In addition, one Academy on Climate Change Adaptation and one Institute of Agricultural Technology offering M.Sc. (Integrated) Climate Change Adaptation and Diploma in Agricultural Sciences respectively are also functioning in Kerala Agricultural University.

Browse

Search Results

Now showing 1 - 3 of 3
  • ThesisItemOpen Access
    Development and testing of a rotary type black pepper cleaner
    (Department of Farm Power Machinery and Energy, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 1995) Abdul Wahab, V S; KAU; Jippu, Jacob
    A power operated rotary type black pepper cleaner is developed, tested and its performance evaluated. The major parts are an inclined circular disc, an involute shaped scraper, a feeding unit and a collecting tray. The black pepper admixture is fed to the drum sieve through a hopper. By rotating the sieve, feed material fall uniformly over one-half of the area of the inclined rotating disc. Good pepper grains being nearly spherical in shape roll down at one end, whereas foreign materials which cannot roll down as freely, is scraped out at the other end by means of an involute scraper. Both cleaned and uncleaned grains are received in a collecting tray placed below the disc. A 3-phase 0.5 HP variable speed dynodrive motor along with a 10:1 gear reduction unit operates the machine. The important physical properties of black pepper relevant to cleaning process are also studied. The trials are repeated for the surfaces of mica and cotton under different levels of feed rate, angle of inclination and speed. Better performance is obtained in the case of cotton surface. Under these conditions, a cleaning efficiency of 88 per cent is obtained at a feed rate of 12 kg/h, angle of disc 11o and at a speed of 10 rpm. The cost of the machine excluding the power unit comes to Rs. 1’100/-. The operating cost of machine is found to be Rs. 16.45/h. It is recommended for further studies and modifications.
  • ThesisItemOpen Access
    Design fabrication and testing of a low cost greenhouse
    (Department of Irrigation and Drainage Engineering, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 1995) Ajayambikadevi, S J; KAU; Remadevi, A N
    Controlled environment agriculture in the form of greenhouses, low tunnels and cloches are being practiced at commercial levels in many countries. Among these the greenhouses are the best for active environmental control. The major hurdle for adopting greenhouse cultivation is its high initial investment. Considering the importance of developing greenhouses of simple design with low initial investment, the thesis entitled ‘Design, Fabrication and Testing of a Low Cost Greehouse’ was undertaken. A greenhouse of size 12 m x 3 m was constructed at the Instructional Farm, KCAET, Tavanur. The structure was gable shaped. The main structural members were hoops, ridge line mechanism, foundation material and the structure for pad gripping and fan replacement. Ultraviolet stabilized polyethylene film was used as the glazing material. The fan and pad system of cooling in which the air is cooled by the moist air drawn through the wetted pads was adopted. The system was designed based on the rate of air to be removed from the greenhouse. A fan of maximum air flow rate of 10450 m3 /hr and a pad of size 3000 mm x 1200 mm was found necessary to satisfy the cooling requirements. The climatological parameters namely dry bulb temperature, wet bulb temperature and intensity of solar radiation were measured both inside and outside the greenhouse. The cooling system was operated for various time intervals and the observations were taken under cooled and uncooled conditions of the greenhouse. The temperature inside the greenhouse was higher than that outside. The maximum temperature recorded inside the greenhouse was 47.60C without cooling and 38.50C with cooling. Longitudinal temperature gradient of 50C existed between the fan end and pad end of the greenhouse. Cooling increased the relative humidity inside the greenhouse. Variation in humidity existed between the pad end and the fan end. A desired temperature and relative humidity can be maintained inside a greenhouse by operating the cooling system for various time intervals. The variation of solar intensity inside the greenhouse was similar to that outside. The polyethylene cover transmitted 60 per cent of the solar radiation incident on it. The average efficiency of the pad was 65 per cent. The cost of construction was Rs. 375.58 per square metre.
  • ThesisItemOpen Access
    Development of a power tiller operated paddy transplanter for conventional seedlings
    (Department of Farm Power Machinery and Energy, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 1995) Prakash, K V; KAU; Sivaswami, M
    Transplanting of paddy seedlings is a very tiresome and labour consuming operation and labour shortage is experienced during planting. As a solution to reduce the high cost of cultivation and labour shortage in paddy transplanting, a power tiller operated paddy transplanter is an essential need of hour. The APAU paddy transplanter was evaluated after rectifying the defects at KCAET instructional farm, Tavanur. Based on the field experiences and considering the all problems in APAU paddy transplanter, an improved version of power tiller operated paddy transplanter was developed and fabricated at KCAET Tavanur and tested during September-October 1994. The convensional root washed paddy seedlings ready to manual transplanting were used. When the power tiller is operated at a forward speed of 1.20 km per hr, the transplanter could transplant 2 to 4 seedlings per hill at a spacing of 100 to 120 mm. The average field capacity was found to be 0.13 ha per hr. A saving of Rs.800 per ha which is 50 per cent and reduction of 296 man-hr per ha which is 92.5 per cent was achieved for transplanting operation alone compared to manual transplanting.