Loading...
Thumbnail Image

Kerala Agricultural University, Thrissur

The history of agricultural education in Kerala can be traced back to the year 1896 when a scheme was evolved in the erstwhile Travancore State to train a few young men in scientific agriculture at the Demonstration Farm, Karamana, Thiruvananthapuram, presently, the Cropping Systems Research Centre under Kerala Agricultural University. Agriculture was introduced as an optional subject in the middle school classes in the State in 1922 when an Agricultural Middle School was started at Aluva, Ernakulam District. The popularity and usefulness of this school led to the starting of similar institutions at Kottarakkara and Konni in 1928 and 1931 respectively. Agriculture was later introduced as an optional subject for Intermediate Course in 1953. In 1955, the erstwhile Government of Travancore-Cochin started the Agricultural College and Research Institute at Vellayani, Thiruvananthapuram and the College of Veterinary and Animal Sciences at Mannuthy, Thrissur for imparting higher education in agricultural and veterinary sciences, respectively. These institutions were brought under the direct administrative control of the Department of Agriculture and the Department of Animal Husbandry, respectively. With the formation of Kerala State in 1956, these two colleges were affiliated to the University of Kerala. The post-graduate programmes leading to M.Sc. (Ag), M.V.Sc. and Ph.D. degrees were started in 1961, 1962 and 1965 respectively. On the recommendation of the Second National Education Commission (1964-66) headed by Dr. D.S. Kothari, the then Chairman of the University Grants Commission, one Agricultural University in each State was established. The State Agricultural Universities (SAUs) were established in India as an integral part of the National Agricultural Research System to give the much needed impetus to Agriculture Education and Research in the Country. As a result the Kerala Agricultural University (KAU) was established on 24th February 1971 by virtue of the Act 33 of 1971 and started functioning on 1st February 1972. The Kerala Agricultural University is the 15th in the series of the SAUs. In accordance with the provisions of KAU Act of 1971, the Agricultural College and Research Institute at Vellayani, and the College of Veterinary and Animal Sciences, Mannuthy, were brought under the Kerala Agricultural University. In addition, twenty one agricultural and animal husbandry research stations were also transferred to the KAU for taking up research and extension programmes on various crops, animals, birds, etc. During 2011, Kerala Agricultural University was trifurcated into Kerala Veterinary and Animal Sciences University (KVASU), Kerala University of Fisheries and Ocean Studies (KUFOS) and Kerala Agricultural University (KAU). Now the University has seven colleges (four Agriculture, one Agricultural Engineering, one Forestry, one Co-operation Banking & Management), six RARSs, seven KVKs, 15 Research Stations and 16 Research and Extension Units under the faculties of Agriculture, Agricultural Engineering and Forestry. In addition, one Academy on Climate Change Adaptation and one Institute of Agricultural Technology offering M.Sc. (Integrated) Climate Change Adaptation and Diploma in Agricultural Sciences respectively are also functioning in Kerala Agricultural University.

Browse

Search Results

Now showing 1 - 1 of 1
  • ThesisItemOpen Access
    Investigations on high rate anaerobic bioreactor for energy production from rubber latex processing effluent
    (Department of Farm Machinery and Power Engineering, Kelappaji College of Agricultural Engineering and Technology,Tavanur, 2020) Megha, A S; KAU; Shaji James, P
    Agro-processing industries often contribute significantly in pollution due to discharge of untreated effluents. By anaerobic digestion of these organic effluents, methane rich gas can be produced which is suitable to generate electricity and process heat. But conventional biogas plants are slow in operation with long hydraulic retention times of 35 to 40 days which necessitates large digester volumes. So, anaerobic digestion of high volume agro-processing effluents is feasible only through high rate bioreactors which can reduce hydraulic retention time to few hours. Rubber latex processing effluent (RLPE) is a dilute waste water for which high rate anaerobic treatment can be an affordable technology. Hence, an investigation was taken up to study the performance of Up-flow Anaerobic Hybrid Bioreactor for energy conversion of rubber latex processing effluent (RLPE). Physico-chemical characteristics of RLPE samples were tested and found that RLPE was a dilute waste water with pH in the acidic range. BOD: COD ratio of 0.44 obtained in this study showed good biodegradability of RLPE. A batch anaerobic digestion study was conducted as a preliminary experiment to investigate the biomethanation characteristics of RLPE. The experiment consisted of four treatments having different composition of RLPE with inoculums replicated thrice. This study could prove that RLPE could be subjected to biomethanation and cow dung slurry can be used as inoculum. Even at a lower inoculum: substrate ratio of 1:2, the system could be started up yielding substantial amount of biogas coupled with good TS reduction. Performance of field scale Up-flow Anaerobic Hybrid Bioreactors (UAHBR) was assessed by operating them at different HRTs of 10, 7, 5, 3 and 2 day. During the study an interruption of 2 months in operation occurred due to shut down of the processing unit due to Covid 19. After interruption of 2 months reactor recovered within one month and it proved that hybrid bioreactor could be restarted easily after a shutdown for few months. Reactor was stable in operation during 10, 7, 5, 3 and 2 day HRTs and exhibited good process efficiency with better pollutant reduction and biogas production. Performance was seen deteriorated beyond 5 day HRT. The bioreactors were operated successively at reduced loading rates corresponding to the longer HRTs after reaching the shortest HRT of 2 day. It was observed that there was no considerable difference in daily biogas production with the earlier values obtained during the progressive decrease in HRT. This revealed that the bioreactors would have achieved the maximum possible microbial population already and there was no further improvement in performance on further passage of time. The performance parameters obtained in the investigations with field scale reactors were used for evolving guidelines to design a full scale anaerobic bioreactor. The UAHBR performance was quite satisfactory at 5 day HRT with respect to pollutant reduction as well as energy production. Hence as criteria, full scale plant was proposed to be operated at 5 day and the corresponding reactor volume was 27 m 3 with 7.2 m 3 gas holder volume. The biogas expected to be produced from the full scale plant can be used in a biogas fired rubber sheet dryer which can save about 500 kg of fire wood per day currently used for drying rubber sheets.