Loading...
Thumbnail Image

Kerala Agricultural University, Thrissur

The history of agricultural education in Kerala can be traced back to the year 1896 when a scheme was evolved in the erstwhile Travancore State to train a few young men in scientific agriculture at the Demonstration Farm, Karamana, Thiruvananthapuram, presently, the Cropping Systems Research Centre under Kerala Agricultural University. Agriculture was introduced as an optional subject in the middle school classes in the State in 1922 when an Agricultural Middle School was started at Aluva, Ernakulam District. The popularity and usefulness of this school led to the starting of similar institutions at Kottarakkara and Konni in 1928 and 1931 respectively. Agriculture was later introduced as an optional subject for Intermediate Course in 1953. In 1955, the erstwhile Government of Travancore-Cochin started the Agricultural College and Research Institute at Vellayani, Thiruvananthapuram and the College of Veterinary and Animal Sciences at Mannuthy, Thrissur for imparting higher education in agricultural and veterinary sciences, respectively. These institutions were brought under the direct administrative control of the Department of Agriculture and the Department of Animal Husbandry, respectively. With the formation of Kerala State in 1956, these two colleges were affiliated to the University of Kerala. The post-graduate programmes leading to M.Sc. (Ag), M.V.Sc. and Ph.D. degrees were started in 1961, 1962 and 1965 respectively. On the recommendation of the Second National Education Commission (1964-66) headed by Dr. D.S. Kothari, the then Chairman of the University Grants Commission, one Agricultural University in each State was established. The State Agricultural Universities (SAUs) were established in India as an integral part of the National Agricultural Research System to give the much needed impetus to Agriculture Education and Research in the Country. As a result the Kerala Agricultural University (KAU) was established on 24th February 1971 by virtue of the Act 33 of 1971 and started functioning on 1st February 1972. The Kerala Agricultural University is the 15th in the series of the SAUs. In accordance with the provisions of KAU Act of 1971, the Agricultural College and Research Institute at Vellayani, and the College of Veterinary and Animal Sciences, Mannuthy, were brought under the Kerala Agricultural University. In addition, twenty one agricultural and animal husbandry research stations were also transferred to the KAU for taking up research and extension programmes on various crops, animals, birds, etc. During 2011, Kerala Agricultural University was trifurcated into Kerala Veterinary and Animal Sciences University (KVASU), Kerala University of Fisheries and Ocean Studies (KUFOS) and Kerala Agricultural University (KAU). Now the University has seven colleges (four Agriculture, one Agricultural Engineering, one Forestry, one Co-operation Banking & Management), six RARSs, seven KVKs, 15 Research Stations and 16 Research and Extension Units under the faculties of Agriculture, Agricultural Engineering and Forestry. In addition, one Academy on Climate Change Adaptation and one Institute of Agricultural Technology offering M.Sc. (Integrated) Climate Change Adaptation and Diploma in Agricultural Sciences respectively are also functioning in Kerala Agricultural University.

Browse

Search Results

Now showing 1 - 9 of 30
  • ThesisItemOpen Access
    Development and evaluation of modified atmosphere packed passion fruit(Passiflora edulis)
    (Department of Post harvest technology and agricultural processingKelappaji College of Agricultural Engineering and Technology, Tavanur, 2012) Madhana Supriya, R; KAU; Sudheer, K P
    Passion fruit is a tropical fruit which is extensively used in juice processing. The fruit is highly perishable and losses its quality immediately after the second day of harvest. The postharvest loss in quality and commercial value is due to the intense respiratory activity and significant moisture loss. Hence a study was undertaken to develop a wax applicator to extend the shelf life of passion fruit by adopting the postharvest technologies. A simple and efficient wax applicator with a capacity of 250 kg.hr-1 was developed based on the physical properties of the fruits. Various samples of the passion fruits were treated with bee wax and commercial wax packed in LDPE bags of 200 and 400 gauge. The effect on the shelf life extension of fruits was investigated individually and in combination of wax and LDPE bags. In the case of LDPE bags, different levels of perforations such as 0%, 0.5%, 1% and 2% were used. The samples were kept in ambient condition viz., 32 - 35°C and 70 - 80% RH and at cold conditions as 7ºC and 90% RH. The physicochemical characteristics of samples were tested periodically at an interval of 5 and 7 days, under ambient and cold storage conditions, respectively. The results obtained were subjected to statistical analysis. From the results it was revealed that the samples kept in non-perforated polythene covers were found to be better than those kept in perforated bags and in normal atmosphere. A maximum shelf life of 40 days was obtained for passion fruits at 7oC coated with commercial wax emulsion. Thus, commercial wax coating in combination with LDPE bags acted as a barrier against moisture loss and respiration rate of fruits. However, the fruits kept as control had lost consumer acceptability after the tenth day of study at cold condition and within two days at ambient storage conditions.
  • ThesisItemOpen Access
    Water balance study of Karuvannur river basin
    (Department of Irrigation and Drainage Engineering, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 1988) Santosh, G Thampi; KAU; John Thomas, K
    This study was undertaken to quantitavely assess the water resources of the Karuvannur River Basin and to study the monthly water balance in order to estimate the balance for ground waterrecharge or depletion during the period 1976 to 1985. The mean monthly rainfall over the basin during the period 1976-1985 was determined by Thiessen polygon method . Data regarding the amount of water released for irrigation from the Peechi reservoir was also collected. Due to lack of data, contribution from other sources was not taken into account. The total runoff from the basin during each month of this period was determined . The various crop combinations in the basin were identified and the area under each of these was estimated . The actual evapotranspiration during each month was estimated using the method outlined by Doorenbos and Kassam. The basin was regarded as an independent hydrologic unit . Hence surface and subsurface inflow and outflow were assumed to be negligible.
  • ThesisItemOpen Access
    Development of a low cost garden tractor
    (Department of Agricultural Engineering, College of Horticulture, Vellanikkara, 1982) Sivaswami, M; KAU; Muhammad, C P
    The study was conducted with the objectives of systematic analysis of components with respect to their kinematics, dynamics and ergonomics and evaluation of traction performance and economics of low cost garden tractor. A greaves Lombardini 5.4 hp diesel engine with 1800 rpm was selected and a simple three step speed reduction system having a single stage V belt drive and double stage chain drives with a pivotted countershaft clutch have been designed. A road speed of 6.635 kmph and field speed of 3.317 kpmh were achieved by using a cone pulley arrangement with 6.00 x 12 size wheel.Correct position of various components bringe the centre of gravity of the unit with and without implement at very close to the final drive axle for easy balancing
  • ThesisItemOpen Access
    Development of small scale equipment for extraction of cocoa butter and production of cocoa powder
    (Department of Agricultural Engineering, College of Horticulture, Vellanikkara, 1982) Ganeshan, V; KAU; George, T P
    The primary objective of this project was to evolve a viable technology and equipment system for small scale processing of cocoa beans. The study mainly concentrated on the development of an extraction unit for the separation of butter from cocoa mass. Various equipment required for small scale processing of cocoa beans were either identified or designed.
  • ThesisItemOpen Access
    Development and field evaluation of a cardomom polishing machine
    (Department of Farm Power Machinery and Energy, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 1999) Anu, Ray Mathew; KAU; Mohammad, C P
    Cardamom capsules when dried have a dried flower stalk which is hard to be removed by manual operation. For destalkinq, a power operated cardamom polishing machine was developed, tested and its performance was evaluated. A polishing drum with attached wooden blades seperated the dried capsules fed in. from the flower stalk attached and were collected seperately. A single phase 1 hp motor served as power source. A 3-factlJr, factorial experiment in Completely Randomized Design (CRD) with drum speed, feed/batch, and retention time as independent variables was performed.
  • ThesisItemOpen Access
    Design, fabrication and testing of a power operated paddy dibbler
    (Department of Farm Power Machinery and Energy, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 1996) Jayarajan, R; KAU; Jippu, Jacob
    A 2-row power operated paddy dibbler was designed, fabricated and tested at Kelapaji College of Agricultural Engineering and Technology, Thavanur. The main components of the dibbler were two seed boxes, plungers reciprocating within the seed tubes, fluted roller seed metering mechanism, dibbler wheels, stationary cam, frame and transport wheels. The seed tubes were fixed radially around the dibbler wheel with 45 mm of it projecting outwards for penetrating the soil. The plunger was actuated by a stationary cam and during its upward stroke it uncovered the farther end of the seed transfer tube and transferred the seeds into the seed tube and then into the holes made in the soil. In the downward stroke the plunger closed the seed transfer tube. Simultaneously the fluted roller transferred the seeds in to the seed transfer tube. The average speed of operation of the dibbler was 1.32 kmph and its field capacity and field efficiency were 0.031 ha/h and 78.18 per cent respectively. The average number of seeds dropped per hill was 5 and the seed rate obtained was 78 kg/ha. The seeds were placed within the confines of the holes made by the seed tube and plunger. There was absolutely no scattering. The depth of placement varied from 3.8 to 4.6 cm. The operating cost of the dibbler was Rs. 502.58/ha. This mechanism offers scope for developing dibblers with more number of rows for being operated more economically.
  • ThesisItemOpen Access
    Modification and performance evaluation of six row rice transplanter for conventional seedlings
    (Department of Farm Power Machinery and Energy, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 1990) Bainu, T Kuzhively; KAU; Sivaswami, M
    The work was carried out at the Kelappaji College of Agricultural Engineering and Technology, Tavanur. The six – row rice transplanter was originally designed for mat type seedlings. Considering the importance of a transplanter using conventional type seedlings, the above transplanter was modified. The modifications were completed in three stages. The performance evaluation of the modified six row rice transplanter was conducted after each stage of modification. The average number of seedlings per hill could be reduced from the average value of six seedlings per hill before modification to 2.27 seedlings per hill after the modifications. The missing hills percentage was brought down from 20.83 per cent to 5.55 per cent and the floating hills percentage was reduced from 10 to 5.55. Percentage of damaged hills was reduced from 23.3 to 8.8. The field capacity of the machine was improved from 0.0139 ha/hr to 0.0162 ha/hr and field efficiency from 48.26 percent to 56.87 per cent. The use of the modified transplanter is profitable if it is operated beyond one hectare per annum. It gives a saving of Rs. 618.00 per hectare compared to the conventional hand transplanting giving a 2. 4 times reduction in total cost. The pay back period of the modified transplanter is 2.24 years when the annual utilization is 2 hectares per annum and 1.13 years when the annual utilization is 3 hectares per annum.
  • ThesisItemOpen Access
    Impact of fertigation and drip system layout on performance of chilli(Capsicum annum)
    (Department of Land and Water Resources and Conservation Engineering, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 2012) Nadiya, Nesthad; KAU; Kurien, E K
    The study “Impact of fertigation and drip system layout on performance of Chilli (Capsicum annum)” was taken up with the objective of determining the effect of fertigation, drip system layout and different levels of irrigation for chilli under plastic mulch. Different fertigation equipments like ventury injector, dosmatic fertigation unit and fertilizer tank were tested to study the hydraulic performance of the system. Ventury injector for fertilizer application was found to have high suction rate in comparison with dosmatic fertigation unit. The suction rate and motive flow rate was found to vary directly with respect to the pressure drop between the inlet and outlet of the fertigation equipment. Ventury injector can be used only if the discharge rate is above 14.6 L/min. Dosmatic fertigatrion unit and fertilizer tank can be used if the discharge rate is above 1.1 L/min and 6.6 L/min. The moisture distribution pattern under different drip field layout was observed. The moisture content near to the plant base was found to be high and decreases as the distance from the emitters increased. The effect of different irrigation levels and drip system layout under plastic mulch on the performance of Chilli (Capsicum annum), Ujwala variety was also studied. The number of branches, stem girth and yield showed significant difference between the treatments. The yield showed significant difference with different levels of irrigation and drip system layout. Maximum yield of 18.32 t/ha was observed for the treatment T5. The treatments T6 (17.952 t/ha) was on par with the treatment T5. The benefit cost ratio for treatment T5, 85 per cent of the irrigation requirement with one lateral for each row of crop was 3.8 and treatment T6, 85 per cent of the irrigation requirement with one lateral in between two rows of crop was 3.9. Even though the yield for the treatment T5 was high, the benefit cost ratio stands high for treatment T6. The high value of benefit cost ratio for treatment T6 was due to the reduction in the quantity of material for drip irrigation system
  • ThesisItemOpen Access
    Effect of different shadings on the environmental parameters
    (Department of Land and Water Resources and Conservation Engineering, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 2006) Bindu, P K; KAU; Xavier, K Jacob
    Controlled environment agriculture in the form of shade houses, greenhouses, low tunnels and cloches are being practised at commercial levels in many countries. Among these, cultivation under shades is an easier method which is widely used for growing ornamental plants. Considering the scope of cultivating vegetables under shade nets, the thesis entitled ‘Effect of different shadings on the environmental parameters’ was undertaken. Four shade structures of size 6 m x 4 m x 2 m were constructed at the instructional farm, KCAET, Tavanur. The shade nets tested were green and black shade nests providing 50% and 75% shade respectively. The effect of shades on the environmental parameters such as temperature, relative humidity, solar radiation intensity and light intensity were studied. These parameters were compared with those in the open space. The temperature was reduced by the shade nets, but the reduction was only in the range of 0.5 to 4°C. The temperature under the black nets was higher than that under the green nets. The relative humidity was higher under the shade nets than in the open space. Also the RH under the green nets is higher compared to that under the black nets. The solar radiation intensity and the light intensity were reduced by the nets in varying ranges. The light intensity and solar radiation intensity under the black nets were very less compared to the green nets. The equations developed give a clear idea about the variation in environmental parameters under the shade nets. The growth of tomato was better in the open space than under the shades. The growth of and yield of amaranthus was better under the G50 shade net. The growth and yield of amaranthus grown in the open space was better compared to those obtained under the G75, B50 and B75 nets.